
SIAL Programmer Guide

ACES III Documentation

Quantum Theory Project
University of Florida
Gainesville, FL 32605

Contributors to the software:
R. J. Bartlett, R. Bhoj, E. Deumens, N. Flocke, T. Hughes, N. Jindal,

V. F. Lotrich, D. I. Lyakh A. Perera, J. M. Ponton, B. A. Sanders, T. Watson

Copyright c©University of Florida 2008, 2010, 2011

Software version: 3.0.5 Oct 2010
Document version: 3.0.5 E Feb 2011

Document formatted:

May 21, 2011

1

Contents

1 Overview 5
1.1 Preparing for a new version of SIAL, SIP, and ACES III * 6

2 Super instruction programming environment 7
2.1 Programming guidelines . 7
2.2 SIAL development environment * . 7

2.2.1 SIAL Compiler . 9
2.2.2 SIO Object File . 9
2.2.3 SIP Runtime processor . 10
2.2.4 Domain specification file . 10

2.3 SIP as a Python extension * . 12
2.3.1 Functional view . 13
2.3.2 Parallel execution . 15

3 Language definition 16
3.1 Syntax . 16
3.2 Domain specific predefined constants . 16

3.2.1 Index constants: . 18
3.2.2 Ordering relations for index constants: 18
3.2.3 Predefined arrays . 19

3.3 Declarations . 19
3.3.1 Multi-segment indices . 21
3.3.2 Scoping rules . 22
3.3.3 PERSISTENT qualifier * . 23
3.3.4 Example formula using high-rank arrays (Victor) 26
3.3.5 Example formula using high-rank arrays (Dmitry) 27
3.3.6 Index schemes for packed storage of arrays 30
3.3.7 Support for high-rank arrays * . 34
3.3.8 Proposal: Support arbitrary rank in SIAL 35
3.3.9 Proposal: Use compound indices in SIAL 36

3.4 Control statements . 37
3.4.1 Subindices . 39
3.4.2 PARDO with processor-groups * . 46
3.4.3 PARDO with grouping * . 49

3.5 Operation statements . 51
3.5.1 Parallel library calls * . 54
3.5.2 Synchronization operations . 54
3.5.3 Super instructions . 55
3.5.4 Super instructions argument list * . 56
3.5.5 Super instruction for computing integrals 56

3.6 Parallel sections * . 57
3.6.1 Informal syntax . 57
3.6.2 Grammar . 57

2

3.6.3 Constraints . 58
3.6.4 Barriers . 58
3.6.5 Allocating processors to sections . 58

4 Execution environment 59
4.1 SIP Components . 59

4.1.1 The IOCOMPANY . 59
4.1.2 Worker companies . 60
4.1.3 Super instruction processing . 60
4.1.4 Executing super instructions on GPGPUs 61

4.2 Memory management . 61
4.2.1 Data blocks and block stacks . 61
4.2.2 Memory estimate from a dry run . 62
4.2.3 Block stack management . 63
4.2.4 Domain specific memory management 64

4.3 Execution management . 64
4.3.1 Role assignment to tasks . 64
4.3.2 PARDO processing . 65
4.3.3 End of loop processing . 67
4.3.4 IO Server activity . 67
4.3.5 Fault tolerance * . 68
4.3.6 ScaLAPACK interoperability * . 69

5 Software development environment 69
5.1 Eclispe IDE . 70
5.2 SIAL IDE Features . 70
5.3 Building or compiling SIAL programs . 70
5.4 Running SIAL programs . 71
5.5 Performance analysis tools . 71

6 Listing of special super instructions 72
6.1 Generic special super instructions . 72
6.2 ACES III domain specific super instructions 76

7 List of domain specific SIAL programs and ACES III capabilities 80

8 Example Programs 89
8.1 SIAL program using a procedure, a served array and a distributed array . . . 89
8.2 SIAL program preparing a served array . 90
8.3 SIAL program using served arrays . 91
8.4 Special super instruction sum 64ss . 93
8.5 Special super instruction set flags2 . 97

3

9 Format of the .sio file 100
9.1 Header record . 100
9.2 Index Table . 100
9.3 Array Table . 101
9.4 Operation Table . 102
9.5 Scalar Table . 103

4

1 Overview

Sections still to be written

• 7 Document ACES III SIAL programs by Tom

This guide explains how to write programs for the Super Instruction Processor. The full
specification of the Super Instruction Assembly Language or SIAL, pronounced ”sail”, is
given in Sect. 3. Example SIAL programs can be found in Sect. 8.

This user guide is one of a set of two. This document focuses on the SIAL programmer
as the user of the super instruction architecture (SIA) parallel programming environment.
The companion ACES III User Guide focuses on the user of the ACES III application that
is written in SIAL to use the SIA environment for solving compute intensive problems in
electronic structure theory using Coupled Cluster methods.

The language was created to easily write complex algorithms for the super instruction
processor or SIP. Rather than an interpreter that executes every command when entered, this
processor is more like a hardware processor, such as a modern micro chip. The instructions
are called super instructions because they operate not on individual numbers, but on data
blocks containing many thousands of numbers.

The language is more like an assembly language and is called the super instruction as-
sembly language (SIAL). The SIP calls the compiler to read the SIAL program in its entirety
and then the processor executes the binary code produced. A stand alone compiler is also
available and it writes a .sio file that can be read and executed by the SIP.

The super instruction architecture (SIA) provides an interface for execution optimization
of very specialized code that requires a lot of processing and a lot of data communication.
All operations are performed in relatively large blocks, compared to the basic unit of a 64
bit computer word, and the operations are performed asynchronously allowing for multiple
instructions being executed in parallel in each of the tasks in the SIP.

The goal of the SIA is to allow efficient parallel processing where latency plays less of a
role and enough work is being given to all components so that there is sufficient time to hide
the latency of any operation. However, it is still necessary to ensure that the bandwidth of
all operations matches so that a steady state exists. This is where some, automated, tuning
of problem to hardware comes in. The problem will be divided up into such pieces that the
given hardware can sustain a steady state where all latency is hidden.

This document consists of three major parts: First the general structure of writing soft-
ware using the SIA is explained in Sect. 2. Then the definition of the SIAL language is
presented in Sect. 3. The execution environment is explained in Sect. 4. Next the software
development environment is described in Sect. 5. Finally some reference material is collected
including a list of special instructions (Sect. 6), a list of all domain specific SIAL programs
written to provide the functionality of ACES III (Sect. 7, the full listing of a few example
SIAL programs and an example super instruction (Sect. 8), and the format of the SIAL

5

object file produced by the SIAL compiler (Sect. 9).

PROPOSED

1.1 Preparing for a new version of SIAL, SIP, and ACES III *

This document describes the version 3.0.5 of ACES III which has SIAL and SIP built
into it. Part of the function of the document is to prepare for and describe the new
version where SIAL and SIP become stand alone parallel programming environment and
where the domain specific capabilities of ACES III are more identifiably separate from
the general framework.

Proposed changes and extensions

• 2.2 SIAL development environment by Erik and Beverly

• 2.2.1 SIAL compiler by Beverly

• 2.2.4 Domain specification file by Beverly

• 2.3 SIP as a python extension by Rohit

• 3.3.3 PERSISTENT qualifier by X

• 3.3.7 Support for high-rank arrays by X

• 3.4.2 PARDO with processor-groups by X

• 3.4.3 PARDO with grouping by X

• 3.5.1 Parallel library call by X

• 3.5.2 Move barriers from special super instructions in to the language by X

• 3.5.4 Argument list for special super instructions by X

• 3.5.5 Move compute integrals to a special super instruction by X

• 3.6 PARALLEL SECTIONS construct by X

• 4.1.4 Support for GPUs by Nakul Jindal

• 4.3.5 Fault tolerance by X

• 4.3.6 ScaLAPACK interoperability by X

6

2 Super instruction programming environment

Writing parallel programs in the super instruction architecture involves three components:

1. a program written in the super instruction assembly language (SIAL) that determines
the execution and data flow,

2. a library of super instructions, which are subroutines with compute kernels, needed by
that SIAL program, and

3. a runtime environment to execute the SIAL program called the super instruction pro-
cessor (SIP).

2.1 Programming guidelines

Programs must be viewed as having only one global scope. There are procedures, but these
should be viewed as tools to organize code and logic, there are no local variables. All variables
must be declared at the beginning of the program, even index loops. This is in agreement
with the idea that every data element is a heavy object: It is a block of floating point numbers
of considerable size, and any operation on it is expensive and must be considered with care.
Therefore, creating temporary copies for passing them as arguments is too expensive.

Temporary variables, blocks, do exist and should be used as much as possible. They are
allocated when first needed and the SIP will regularly check whether they are still needed
and if not, mark the blocks as available for use.

Further tools for programmers are the performance analysis tools discussed in Sect. 5.5
and the integrated development environment (IDE) module for Eclipse described in Sect.
5.1.

PROPOSED

2.2 SIAL development environment *

Index of proposed changes with author 1.1
The following is an outline of what is needed for a development environment that would
enable developers to use our runtime code to achieve scalable algorithms using the SIAL
paradigm.

1. Input data
Each SIAL program currently reads parameters from a ZMAT file and basis set
data from a GENBAS file. Also, small amounts of data that may be used in other
SIAL programs or even other application programs is read/written on a JOBARC
file. Large data arrays that are to be passed from one SIAL program to another
reside in blocked format on a BLOCKDATA file, and can be used to perform job
restarts.

7

In a development environment, we envision an API that allows users to provide
routines that can read parameter data in their own format and communicate those
parameters to the SIP runtime code. Similarly, routines can be provided to read
arrays of data, such as a grid, from disk files. This data can be communicated to
the SIP, converted into blocked format, and stored in either distributed memory
data structures or dumped off to the SIP I/O servers. Once this data has been fed
into the SIAL environment, there must be a way for the SIP to understand how to
link this data with the arrays defined in the SIAL code itself. A list of equivalences
can be specified to do this, so that the data passed in a specific API call can be
made equivalent to a specific SIAL array.

2. Output data
We view output data as one of three types: (1) Data arrays that must be stored on
disk for later processing, (2) small amounts of data that are computed in the job,
and are needed in later processing steps (think of our TOTENEG and GRADIENT
data), and (3) data printed by the job. Data of type (1) must be handled by user-
provided routines through an API, similar to the input data. The user should have
the ability to ask the SIP code for a particular slice of his data. The SIP routine
will extract the data from its various blocks and pass it back to him. The user
routine must be responsible for storing it in his own particular format. It would
seem that data of type (2) must be extracted from the user’s own data structures
(common blocks, etc.), so it seems like a special instruction would be needed. Type
(3) data could be printed via a special instruction as well.

3. Special instructions
The way special instructions are handled now is that the routines are loaded into
a table at compile time, and the table indices are compiled into the instructions.
At runtime, the addresses of the instructions are loaded into the table as well, and
when a special instruction is executed, its address is looked up in this table, and
the routine is called with a standard set of arguments. The special instruction
has access to all the SIP code’s tables (array table, index table, etc.). Most of
the special instruction routines consist of a standard preamble of decoding arrays
out of the instruction table, looking up the current block of the array, finding its
address in memory, etc.

Since most developers are not concerned with these details, we may want to consider
refining this process, so that a developer is simply called with the various arrays
used in the instruction, along with the indices and segments of those arrays and the
data blocks themselves. This would greatly simplify writing a special instruction.
Also, we can set up a “developer” directory in which these routines and the other
developer-added software can be placed. Anything in this directory automatically
gets linked in. An alternative to this is the Python-like scheme of dynamically
loading these routines as shared objects.

8

4. Indices and internal constants
We currently have a fairly small number of index types, which are preset and
hard-wired, with a fairly rigid numerical ordering setting up the relationships
between occupied, virtual, and AO and MO orbitals. Also, we use a number
of pre-defined constants which are linked to our parameters, such as CC ITER,
CC BEG, SCF HIST, etc.

Instead of having the indices hard-coded into the SIAL language, perhaps we can
make it more adaptable by having an index definition file or interface. The compiler
could get the definitions for its indices off of this file and use this to build SIAL
programs. A similar idea could be used for the pre-defined constants and pre-
defined static arrays. This will require some reworking of both the compiler and
SIP code.

Once these elements are in place, we will have a reasonable application development
platform. We will almost certainly run into other snags as people use this to add new
algorithms. A good first test would be to restructure ACES III to fit within this frame-
work.

2.2.1 SIAL Compiler

Index of proposed changes with author 1.1
Possible options are to generate a new compiler with the domain specific changes (DSC)
or to provide a mechanism to specify the DSC in a header file that gets inserted in the
SIAL program and processed by a compiler that remains unchanged. A combination is
possible as well. Handling domain specific constants can possibly handled in a different
way than a new set of indices. Note that SIAL supports three kinds of indices, segmented
with variable segment-size, segmented with uniform segment-size and simple. The simple
indices can be thought of as indices with a segment-size of one. Given this framework,
different index types can be constructed by specifying the kind and the ranges can be
specified with constants. Therefore it is not likely that support of domain specific indices
requires special handling beyond the specification of constants.
It is important to realize that we need a mechanism for error checking that ensures that
changes in the compiler are consistent with changes made in other components listed
below.

2.2.2 SIO Object File

The format of the content of the object files created by the compiler is described in Sect.
9. We do not anticipate any need for the domain developer to make changes in this
format, but we may need to make some changes to communicate changeable features in
SIAL to the SIP.
Maybe a central repository or process must be defined to keep track of internal codes
used for naming things like operation codes and index types.

9

2.2.3 SIP Runtime processor

The SIP goes through the following steps, some of which may need DSC while others
seem to be unaffected.

1. Read input constants: An API is needed so that the domain developer can write a
subroutine that SIP will call in which the domain input file is processed. In turn,
the SIP needs to provide an API for the developer to call inside this routine to
enable him/her to read and write values that correspond to the defined constants
in the matching SIAL.

2. Initialization of blocks and stacks. This seems to need no change. Any custom
action needed at this stage should be prepared in previous stages. For example,
for indices with variable segment sizes, like the aoindex, an array with the length
of each segment should have been prepared and should be available to the routines
performing the initialization.

3. Perform a dry run pass through the SIAL code to estimate the use of memory and
size all stacks. This, too, seems to need no change.

4. Read input data. With memory set up, further data, typically larger amounts than
the set of constants read in the first reading, can now be read in. This requires a
similar two-ended API.

5. Execution of the SIAL program by reading and processing the instruction table.
This requires no change, but may require some error processing when instructions,
predefined or special, are called in the SIAL program but do not exist or do not
match routines known to SIP. The list of special instructions available to the cus-
tomized SIAL program can be given in a header file. Then all instructions and
anything special about them is available to SIP in the SIO-file. After one SIAL
program completes execute the next one read from the input in step 1.

6. Decide whether the sequence of SIAL programs must be run again, e.g. as in a
geometry optimization. It is possible that some data must be written to storage
for the next sequence of executions or for future processing. Both these activities
require a two-ended API as for reading constants and data.

2.2.4 Domain specification file

Index of proposed changes with author 1.1
The extensions are specified in a Domain Specification file (DSF) with a well-defined
format that is easy to read but able to be mechanically processed. This file contains the
name of the domain, an ID number, new index type names and the relationships between
them, predefined variables including their default values, if any, and constraints on the
values. An example is given below which should illustrate the concepts. This should
really be done with an XML schema.

10

domain example:2000 //domain names and ids are centrally administered

include aces:100

{ type

{ index_type aoindex2; //type id 2000, the ids are generated

//from the domain id

index_type moindex2 = 0; //type id 2001, should default

//values for the type be specified?

index_type moaindex2; //type id 2002

predef_index_type norbindex2; // type id 2003

//a predef_ type can only be

//used for predefined variables

scalar_type velocity; //type id 2004

scalar_type magnitude; //type id 2005

}

compatibility

{ norbindex2 < moindex2; //a norbindex can be used where an

//moindex is expected

norbindex2 < moaindex2; //a norbindex can be used where an

//moaindex is expected

aoindex2 == moindex2; //an aoindex can be used where an

//moindex is expected

// and vice versa

velocity < scalar; // a velocity can be used whenever a scalar

//is expected

magnitude < scalar; //a magnitude can be used whenever a

//scalar is expected

//but using a velocity when a magnitude is

//expected is an error

//default is t1 < t2

}

predefined

{ norbindex norb2 ‘‘total number of atomic orbital segments’’;

//each predefined has a type, name,

// and a description

int cc_beg2 = 2 ‘‘constant’’; //optional default value

moindex2 nocc2 ‘‘number of occupied molecular orbital

segments (no spin)’’;

moindex bvirt ‘‘begin of virtual orbital segment range

(no spin)’’;

//this one came from the included definition

moaindex naocc ‘‘number of occupied molecular orbital

segments (alpha)’’;

}

11

constraints

{ * <= norb; // * is a wild card

0 <= *;

1 < nocc;

1 < nocc;

bvirt <= nocc;

}

}

The DSF can be processed (manually, or eventually automatically) to generate a variety
of additional files that are used in the SIAL compiler, the SIP, and the IDE. Since all
will be generated from a single DSF, no inconsistencies will be generated.
To ensure consistency between all of the generated parts at execution time, each DSF
will be generate a key obtained by applying a hash function to its contents. This key
will be included in each file generated and checked for consistency at run (or link) time.
If the DSF changes, the key will also change, and thus we avoid inconsistencies caused
by using different components that are generated from different versions of the DSF.
From the DSF, something along the following lines should be generated:

1. Header files analogous to keywdcount.h which contain the types and their associ-
ated constant values that can be used throughout the SIA.

2. A class (possibly a replacement for QCArrayClass) that encodes the type compat-
ibility information. Existing parts or the compiler that do type checking need to
be modified to use this instead of hard coded conditions.

3. A class that encodes the given constraints on the the predefined variables. Existing
parts of the compiler that check array bounds need to be modified to use this instead
of hard coded conditions.

4. syntax.cpp currently contains IsPreConstant and IsDeclaration methods. These
should be provided by the previously mentioned classes

5. Files needed by the IDE

It would be easy to create a simple IDE for DSF files.
The values for predefined constants are currently obtained from a ZMAT or JOBARC
file. Instead of providing an API for this, the users should provide something that looks
like a generalized ZMAT file containing (name,value) pairs, and including the ability to
read small arrays. Generalize framelib/params to read the new files (while maintaining
compatibility). It should also be able to check that all predefined constants either have
a default value or have been given a value.

2.3 SIP as a Python extension *

Index of proposed changes with author 1.1

12

By enabling SIP to be imported into Python the power of SIAL programming can be
made available to many other developers. The process to import SIP into Python can
also be used to import it into NWChem and MPQC, thus making the capabilities in
coupled cluster theory implemented in SIAL programs listed in Sect. 7 directly available
to these large user communities.
To show the functionality provided by creating an environment like SIA as a dynamically
loadable extension of another software package, we will describe in some detail an example
ACES III execution from Python using the SIP as an extension of Python to run a set
of ACES III SIAL programs. The details of the how to build SIP as an extension are not
shown, but they are well-known and extensively documented in the Python community.
Once the functionality exists within Python, it is straightforward to port it to other
environments such as NWChem and MPQC.
The user who wants to execute ACES III computations using the Python extension, will
first start an interactive Python session from the command line. A batch session works
the same way, except that the input for Python will come from a Python script file.

2.3.1 Functional view

At the Linux interactive shell prompt, the user types the command to start a Python
session:

mycomputer% python

>>>

and receive the basic Python prompt. To teach Python all the tricks SIP can do, the
user uses the Python import command.

>>> import sip

This will cause the running python executable to dynamically load the shared object
sip.so and the generic library libsip.so, which has the basic code and capabilities of SIP
that is currently available in the executable xaces3.
Next the user indicates that she wants to use SIP in the quantum chemistry domain by
configuring SIP. All commands provided by the SIP are now available as members of the
loaded Python module called sip.

>>> sip.configure(’quantchem.def’)

This command instructs the SIP extension of Python to load the domain specific shared
object libaces3.so, which contains the code required to support orbitals, compute inte-
grals, read ZMAT files, write JOBARC files, etc. Next the user needs to create a data
structure that will hold all the information for a computation, sort of like a JOBARC
file but resident in memory. We call it rdx in the example because we intend to do a
calculation on the molecule RDX,

>>> rdx = sip.data()

13

Then the user loads the information from the ZMAT file that we created for RDX in the
usual ACES III format into the Python/SIP data structure called rdx and allow SIP to
do some appropriate initialization.

>>> rdx.zmat(’rdx.zmat’)

Notice that the rdx data structure is an object that has a member function called “zmat”
that knows how to process ACES III ZMAT files and loads the information from it into
the data structure. The domain specific method “zmat” is provided by the libaces3.so
shared object loaded by the “configure” method above. The “configure” method is a
generic SIP method and is provided by libsip.so.
The next step prepares SIP to run a SIAL program. A SIAL program consists of at least
two source files:

1. a source file written in SIAL, for example scf.sial, contains the over all logic of the
algorithm, and

2. a source file written in Fortran, C, or C++, for example libscf.f, contains the source
code for the special super instructions called from the SIAL program that are not
provided by the generic SIP environment in libsip.so, not by the domain specific
environment in libaces3.so.

In the SIAL program a new declaration makes the SIAL compiler aware of the location
of the special super instructions as follows:

USE ’libscf.f’

The user can compile the SIAL program with the generic SIP method “compile”.

>>> sip.compile(’scf.sial’)

The compiler produces two files

1. scf.sio, the super instruction object file containing the code for the SIP, and

2. libscf.so, the shared object with the code of the special super instructions compiled
for the particular hardware platform such as Intel processor possibly with nVidia
GPU code attached to it as well.

It is not necessary for the user to recompile the SIAL programs before every run, we just
show the compilation step in the example here to illustrate the flexibility provided by
the SIP environment as an extension to Python.
With the data entered into the runtime data structure rdx, the SIP is almost ready to
perform a calculation. Assume that the user wants to run the SCF SIAL program. To
enable this, SIP must be prepared or initialized with the “init” method.

>>> rdx.init(’scf.sio’)

14

This causes SIP to dynamically load the shared object libscf.so (the name is contained
in the .sio file) with the special super instructions and to verify that all required super
instructions are now available. It also makes SIP go through the SIAL program in dry-
run or memory-estimation mode. After the dry run, it allocates the block stacks and
assigns all MPI tasks their role as worker or IO servers. Then the SCF SIAL program is
executed.

>>> rdx.run()

The results from the calculation are now stored in the data structure rdx. The user
can dump this information in the JOBARC format for processing by other tools or for
compatibility with ACES III runs using the xaces3 executable instead of the Python
extension.

>>> rdx.dump(’rdx.jobarc’)

The user can check the results from the rdx.jobarc file, or by using data members of rdx
directly in Python commands. For example, to print the total energy, she types

>>> print rdx.toteng

To clean up after the SCF run, the user issues the “clear” command. Then the next
SIAL program can be run, for example to perform the CCSD computation.

>>> rdx.clear()

>>> rdx.init(’ccsd.sio’)

>>> rdx.run()

>>> rdx.dump(’rdx.jobarc’)

The “clear” method deallocates the block stacks, which are sized for the SCF calculations
and unloads the libscf.so shared object. The CCSD SIAL program consists of the SIAL
source code file ccsd.sial and the special super instructions source file libccsd.f. The
“init” method loads the libccsd.so shared object and allocates the block stacks with sizes
suitable for the CCSD calculation as coded in the CCSD SIAL program.
All these commands and more can be used inside Python programs to compose very
complex simulations. For example an molecular dynamics algorithm written in Python
can be easily modified to perform molecular dynamics with CCSD gradients computed
by ACES III this way.

2.3.2 Parallel execution

To have a parallel program, SIP must be started in all tasks. This can happen in multiple
ways. A serial main program is called in a master task, for example the Python interactive
shell. At the same time a standard executable like xaces3 is start in all other tasks and
they all wait for commands from the SIP in the master task running as an extension of
Python.

15

Another scenario is that all tasks start Python and immediately import the SIP extension,
Then the worker tasks wait for commands from the master as in the previous scenario.
A further enrichment can be contemplated: A large groups of tasks is started running
Python. Depending on the control of a Python program one group of tasks all import SIP
and start working on some set of SIAL programs. Another group of tasks also imports
SIP but now starts to work on a different set of SIAL programs. The Python program,
which can also access MPI with its own communicators, can ensure that the two groups
of tasks exchange data as needed. This allows the user to build very complex simulations,
leveraging the power of Python and SIP.
In all scenarios listed, Python can easily be substituted with NWChem or MPQC.

3 Language definition

3.1 Syntax

1. Input is free form.

2. The lines must be less than 256 characters.

3. There are no continuation lines

4. Keywords and variable names are case insensitive.

5. All text after the pound sign (#) is considered a comment and is ignored. Blank lines
and lines with only comments are ignored.

6. The language may in the future include data layout directives.

7. Every line is meaningful by itself.

8. Every name can be up to 128 characters long and consists of alphanumeric characters
and underscores, the first character must be alphabetic.

9. Reserved words cannot be used as names.

3.2 Domain specific predefined constants

Some domain specific variables are defined from other input sources, such as the JOBARC
file. All these constants count in segments, not in individual orbitals. A general syntax to
allow development of support for other domains is being developed. See Sect. 2.2 for a more
extensive discussion.

1. norb: total number of atomic orbital segments equal to the total number of molecular
orbital segments and therefore norb can also be used in declarations of ”no spin”,
”alpha”, ”beta” MO indices.

16

2. scfenerg: SCF energy read in from JOBARC.

3. totenerg: Total energy read in from JOBARC.

4. damp: value of DAMPSCF from ZMAT.

5. scf iter: value of SCF MAXCYC from ZMAT.

6. scf hist: value of SCF EXPORDE from ZMAT.

7. scf beg: value of SCF EXPSTAR from ZMAT.

8. scf conv: value of SCF CONV from ZMAT.

9. cc iter: value of CC MAXCYC from ZMAT.

10. cc hist: value of CC MAXORDER from ZMAT.

11. cc beg: Constant equal to 2, there is no ZMAT parameter corresponding to this con-
stant.

12. cc conv: value of CC CONV from ZMAT.

13. natoms: the number of atoms from ZMAT.

14. itrips: Starting occupied orbital to process in the triples codes.

15. itripe: Ending occupied orbital to process in the triples codes.

16. ihess1: Beginning value for Hessian index i to process.

17. ihess2: Ending value for Hessian index i to process.

18. jhess1: Beginning value for Hessian index j to process.

19. jhess2: Ending value for Hessian index j to process.

20. subb: Beginning sub index range used in triples codes.

21. sube: Ending sub index range used in triples codes.

22. sip sub segsize: Segment size of subindex segments.

23. sip sub occ segsize: Segment size for subindices of an occupied index.

24. sip sub virt segsize: Segment size for subindices of a virtual index.

25. sip sub ao segsize: Segment size for subindices of an atomic orbital index.

17

3.2.1 Index constants:

The constants of type ”no spin molecular orbital”, ”alpha molecular orbital”, ”beta molecular
orbital” cannot be compared, they are of different types that correspond to the declarations
(defined below) MOINDEX, MOAINDEX, MOBINDEX, respectively.

1. nocc,naocc,nbocc: number of occupied molecular orbital segments (no spin, alpha,
beta)

2. nvirt,navirt,nbvirt: number of unoccupied or virtual orbital segments (no spin, alpha,
beta)

3. bocc,baocc,bbocc: begin of occupied orbital segment range (no spin, alpha, beta)

4. eocc,eaocc,ebocc: end of occupied orbital segment range (no spin, alpha, beta)

5. bvirt,bavirt,bbvirt: begin of virtual orbital segment range (no spin, alpha, beta)

6. evirt,eavirt,ebvirt: end of virtual orbital segment range (no spin, alpha, beta)

3.2.2 Ordering relations for index constants:

The following tests return true:

1. i ≤ norb
where i is any of the predefined constants bocc, baocc, bbocc, eocc, eaocc, ebocc, bvirt,
bavirt, bbvirt, evirt

2. i ≥ 1
where i is any of the predefined constants bocc, baocc, bbocc, eocc, eaocc, ebocc, bvirt,
bavirt, bbvirt, evirt, eavirt, ebvirt

3. i ≥ 0
where i is nocc, naocc, nbocc, nvirt, navirt, nbvirt

4. The 6=4x3/2 relations between the 4 ”no spin MO” constants are
eocc ≥ bocc
bvirt > eocc
bvirt > bocc
evirt ≥ bvirt
evirt > eocc
evirt > bocc

5. The 6=4x3/2 relations between the 4 ”alpha MO” constants are
eaocc ≥ baocc
bavirt > eaocc
bavirt > baocc
eavirt ≥ bavirt
eavirt > eaocc

18

eavirt > baocc

6. The 6 relations between the 4 ”beta MO” constants are
ebocc ≥ bbocc
bbvirt > ebocc
bbvirt > bbocc
ebvirt ≥ bbvirt
ebvirt > ebocc
ebvirt > bbocc

All tests that cannot be obtained from these by the logical operation of reversing the elements
and the operator, are not defined.

3.2.3 Predefined arrays

A number of basic domain specific arrays are predefined. They are computed by one module
and then used by many subsequent modules. They are written to the JOBARC file between
the runs of different modules. Thus they are also available in restart runs that obtain some
or all of their input from the JOBARC file.

These predefined arrays are deprecated and should be replaced by suitable local or dis-
tributed arrays.

1. static c(mu,p): Restricted spin orbital transformation matrix from the SCF, read in
from JOBARC. p is moindex 1:norb and mu is aoindex 1:norb.

2. static ca(mu,pa): Alpha spin orbital transformation matrix from the SCF, read in from
JOBARC. pa is moaindex 1:norb and mu is aoindex 1:norb.

3. static cb(mu,pb): Beta spin orbital transformation matrix from the SCF, read in from
JOBARC. pb is mobindex 1:norb and mu is aoindex 1:norb.

4. static e(p): Restricted spin orbital energies from the SCF, read in from JOBARC. p is
moindex 1:norb.

5. static ea(pa): Alpha spin orbital energies matrix from the SCF, read in from JOBARC.
pa is moaindex 1:norb.

6. static eb(pb): Restricted spin orbital energies matrix from the SCF, read in from
JOBARC. pb is mobindex 1:norb.

3.3 Declarations

1. aoindex mu=1,norb
Define the AO block index mu with range 1 through norb. Note that these indices count
blocks, not individual orbitals. Ranges must be defined using predefined constants and
the number 1, all other values generate an assembly error.

19

2. moindex p=1,nocc
defines the MO block index p with range 1 through nocc. Note that these indices count
blocks, not individual orbitals. Ranges must be defined using predefined constants and
the number 1, all other values generate an assembly error.

3. moaindex pa=1,naocc
defines the MO alpha block index pa with range 1 through naocc. Note that these
indices count blocks, not individual orbitals. Ranges must be defined using predefined
constants and the number 1, all other values generate an assembly error.

4. mobindex pb=bbvirt,ebvirt
defines the MO beta block index pb with range bbvirt through ebvirt. Note that these
indices count blocks, not individual orbitals. Ranges must be defined using predefined
constants and the number 1, all other values generate an assembly error.

5. index i=1,10
defines a simple index i with range 1 through 10 to be used in DO loops e.g. for an
iteration.

6. laindex l=1,23 defines an index l with range 1 through 23 that has no association with
atomic or molecular orbitals, but can be used to declare a dimension of an array. With
this type of index, arrays can be created that have a mixture of dimension indices:
some dimensions can be specified with the range of AOINDEX or MOINDEX and
other dimensions with LAINDEX. The convention is that the dimensions with type
LAINDEX must come after all dimensions with type AOINDEX or MOINDEX.

7. sub index sub = subb, sube
defines a subrange of data which ranges over the pre-defined constants subb to sube.
The values subb and sube are obtained via user input at run-time.

8. scalar fac
defines the scalar variable fac of type real (integers are treated as real). This value is
local to each task.

9. static fock(mu,p)
defines an array stored locally in the task allocated with a separate malloc. All prede-
fined arrays are of this kind.

10. temp v1(p,mu,lambda,sigma)
defines an array block with one MO and three AO indices that only exists locally in
the form of a single block allocated on the block stack.

11. local aa(mu,p)
defines an array stored locally in the task and allocated on the block stack.

12. distributed v4(p,q,r,s)
defines an array distributed over many tasks and allocated on the block stack. The
way it is distributed is determined outside the SIAL.

20

13. served v(mu,nu,lambda,sigma)
defines the array v with four AO indices, which must have been defined before and
specifies that the array is in disk-backed storage. Access to the array will be through a
dedicated set of tasks called IO servers. The servers hold blocks of the array and write
them to a file system on disk. The IO servers have a mechanism to manage their local
memory to optimize the flow of data blocks to and from the served arrays. Blocks will
be delivered by an IO server on request. The association of blocks with IO servers is
fixed during an execution run but is determined by the SIP, not be the SIAL program.
Because served arrays can overflow to disk, they can be larger than distributed arrays.

3.3.1 Multi-segment indices

In the domain of electronic structure there are indices that have subranges that are treated
differently in many computational expressions. For example, an

moindex p=1,norb

is divided into two subranges of the same type

moindex i=bocc,eocc

moindex a=bvirt,evirt

called the “occupied orbitals” and the “virtual orbitals”. In a typical problem the predefiend
constants are consecutive and bocc=1, eocc=nocc, bvirt=nocc+1, evirt=norb. These index
types are the same type, but for optimal performance it may be advantageous to have
different segment sizes associated with the indices that run over the subranges. This is
particularly relevant because the higher level mathematical operations to be performed often
imply slightly different operations on elements of arrays depending on which subrange or
subranges the indices of elements belong to. Table 1 gives an example of a molecular orbital
(MO) index and the occupied and virtaul subranges with their own segment sizes. The result
is that any loop over the moindex p will use segment size of 10 for the first four values of teh
(super)index, covering orbitals 1 through 40, and it will use index 20 for the (super)index
values 5 through 10, covering orbitals 41 through 140.

moindex p
moindex i a

index value 1 . . . 4 5 . . . 10
segment size 10 . . . 10 20 . . . 20

orbital number 1 . . . 40 41 . . . 140

Table 1: An moindex p and the moindices i and a covering the occupied and virtual
subranges with their respective segments, which can have different sizes.

In principle, one could define separate arrays so that segment sizes for these arrays
are the same throughout the range of all its indices. However, this is not natural for the
mathematical expression and definition of algorithms in this domain. It is likely that other
domains have similar needs.

21

It is the responsibility of the designer of the domain specific definitions and the program-
mer of the domain specific initialization code that determines the predefiend constants to
ensure that a consistent set of subranges results.

Note that the SIAL programmer cannot define new multi-segment indices. They are
defined at the time the domain specific features are set up. Once they are defined in a domain,
the runtime system will provide an environment in which indices can be used without ever
running into any problems.

3.3.2 Scoping rules

All indices and arrays have global scope. However, the arrays do not always have blocks of
data associated with them.

1. temp arrays have a block upon the first assignment until the closest enclosed code
block ends with ENDDO or ENDPARDO. Note that this does not hold for the IF code
block.

2. local arrays have blocks after ALLOCATE until DEALLOCATE.

3. Distributed arrays have blocks after CREATE until DELETE.

4. Served arrays have some blocks after they are prepared until all the blocks in the array
are removed with DESTROY; the arrays still exists and can be used again for new
data.

SIAL has a single global name space. All variables must be declared at the beginning of
the program.

A scope is the text of a loop between a PARDO or DO statement and the corresponding
ENDPARDO or ENDDO, respectively. Scopes may be nested, although a PARDO loop may
not be nested inside another PARDO loop. Value bound in a scope are also bound in any
inner scope. In contrast to many programming languages, procedures do not form a scope;
they are actually macros and can be best understood as being inserted where they appear
(with a return statement interpreted as a jump to the instruction following the procedure.)

SIAL programs are divided into sections by barriers, respectively. No barriers are allowed
inside PARDO statements. All branches of an IF statement must contain the same set of
barriers (server barrier or sip barrier) in the same order.

A legal SIAL program must be correctly synchronized. The semantics of SIAL programs
that are not correctly synchronized is undefined.

A correctly synchronized program has a sip barrier or server barrier between conflict-
ing accesses to distributed and served arrays, respectively. Conflicting operations are two
operations in the same section accessing the same array as indicated in Table 2.

In Tables 3, 4, 5 value bindings are determined with respect to the text of the program
and the program semantics. For example, a block of an initialized distributed array is bound
to a value by a GET statement, even though in the implementation, there may be a delay.
This is because, after the GET, another statement may access the array block and be sure it
will see a valid value. The fact that this might actually involve waiting is irrelevant to these
semantics.

22

put get accumulate (+=) prepare request
put X X X N/A N/A
get X X N/A N/A

accumulate (+=) X X X X
prepare N/A N/A X X X
request N/A N/A X X

Table 2: Conflicting operations on arrays must be synchronized with sip barrier or
server barrier.

type bound to a
value (unde-
fined)

unbound storage allo-
cated

storage deal-
located

location

predefined
constants

prior to run-
time

N/A static N/A replicated

static array
element

assignment N/A static N/A replicated

index header of DO
or PARDO
loop

end of loop static N/A replicated

block of temp
array

first assign-
ment in a
scope where
undefined

end of defin-
ing scope

Implicit when
bound, ob-
tained from
block stack

Implicit at
end of defin-
ing scope

local

block of local
array

when al-
located; is
Initialized to
zero

when deallo-
cated

allocate
statement,
obtained from
block stack

deallocate
statement

local

Table 3: State changes of variables (1)

PROPOSED

3.3.3 PERSISTENT qualifier *

Index of proposed changes with author 1.1
SIAL programs are executed as single units. All communication of data happens through
blocks to list files written at the end of a run by one program and read in at the beginning
by the next SIAL program.
We can modify the architecture of SIAL programs by renaming what is now called a
SIAL “program” to a new thing called a SIAL “overlay” and allow multiple overlays to
be part of a larger unit that will be then a SIAL program. Obviously it will be possible

23

type bound to a
value (unde-
fined)

unbound storage allo-
cated

storage deal-
located

location

block of
distributed
array

Bound to cur-
rent value by
get. Binding
to current
value may
occur imme-
diately if the
primary or a
cached copy
is local, or
after commu-
nication with
the worker
holding the
primary block
if not.

End of scope
where GET
performed.

When a
CREATE
statement
is executed,
each block
of the array
is allocated
on the block
stack of one
of the par-
ticipating
workers. This
is considered
the primary
copy of the
block. Each
block is ini-
tialized to
0s. The SIP
determines
the data
distribution
(i.e. which
worker has
which block).
A local copy
of the block is
cached in the
block stack
of the worker
after a GET.

DELETE
deallocates
all blocks of
the primary
copy. Un-
bound cached
copies may be
removed from
a worker’s
block stack
when the
block is
needed for
reuse, when
a sip barrier
is performed,
or when
the array
deallocated.

A primary
copy with
cached local
copies.

Table 4: State changes of variables (2)

24

type bound to a
value (unde-
fined)

unbound storage allo-
cated

storage deal-
located

location

block of
served array

No default
initialization,
only defined
after a pre-
pare has been
executed by
some worker.
Bound to
current value
on request or
PREQUEST

End of scope
where RE-
QUEST/
PREQUEST
performed,
or until
server barrier,
whichever
comes first.

Each primary
block is al-
located at
the IO server
when the first
prepare is
performed.
A local copy
of the block
is cached in
the block
stack of the
worker after a
REQUEST or
PREQUEST.

Cached
copies are
removed from
a worker’s
block stack
when the
block is
needed for
reuse, or
when a
server barrier
is performed.

The primary
copy of a
block man-
aged by an
IO server
with cached
local copies
at workers

Table 5: State changes of variables (3)

to have SIAL program that contains only a single SIAL overlay to reproduce what we
have now.
The functionality added by this hierarchical structure would be that arrays can be de-
clared in the SIAL program as PERSISTENT, or something similar, with the meaning
that they will persist across multiple overlays and can then be IMPORTED in overlays
that need the data as needed. The initial implementation would use the existing mecha-
nism of writing out blocks to list files to preserve arrays. The structure of program and
overlay would provide a framework for more a general implementation.
Exit points of overlays are also natural points to call for check-points. The infrastruc-
ture to define and communicate data between overlays will be helpful in creating more
powerful check-pointing capabilities.
For example, the orbital coefficients are now declared as a predefined array and are
implemented as a replicated static array. They could become a persistent array created
in the SCF overlay and used in all later overlays. This would allow it to become a
distributed array to support much larger molecules.
The construct of an overlay is also relevant to define a richer environment of hierarchi-
cal parallelism. It is possible to express dependencies among overlays inside the SIAL
program. For example the dependency of a CCSD gradient calculation may be

SIAL ccsd_grad

PERSISTENT DISTRIBUTED c

PERSISTENT DISTRIBUTED tijab

...

25

OVERLAY scf

OVERLAY ccsd NEEDS scf

OVERLAY lambda NEEDS ccsd

OVERLAY onegrad NEEDS lambda

OVERLAY twograd NEEDS lambda

END SIAL ccsd_grad

This will allow SIP to execute onegrad and twograd in parallel on different groups of
workers when there are sufficient workers in the run. Each overlay will IMPORT its
version of the T-amplitudes as a distributed array, which will then be replicated twice in
the whole system, once in each group of workers executing the overlay.
We can call such overlays that can run on a subgroup of all workers a partial overlay.
The infrastructure of a partial overlay is also useful when running on a large number of
processors, e.g. 60,000, for a complex calculation like a CCSD(T) geometry optimization
and some of the overlays, e.g. SCF, for not perform well at this scale or even anti-scale.
Then the SIP can run the SCF overlay as a partial overlay on a subgroup of the workers.
All workers are needed for some of the overlays and splitting the job in multiple jobs
with different numbers of processors is impractical.

3.3.4 Example formula using high-rank arrays (Victor)

In order to test our ability to use high-rank arrays effectively we propose that as an initial
set of expressions to evaluate we consider the following, which consists of evaluating a 10
dimensional array(non iteratively) from smaller arrays and then contracting this with smaller
arrays to form a scalar.

E = [[[[tabcdeijklmV
lm
l1e

]V l1k
dk1

]V k1j
cj1]V ij1

ab] (1)

where

tabcdeijklm = [[[tabij1V
j1c
jk1

]V k1d
kl1

]V l1e
lm] (2)

In the above expressions the arrays tabij and V are known and will be determined indepen-
dently from the above. Evaluation of E using minimal cost and storage requirements is the
goal. To this end tabcdeijklm should be evaluated from Eq. (2) and then the energy expression
Eq. (1) evaluated. Indices which are repeated over are assumed to be summed over.

In Eq. (1) and Eq. (2) the square brackets indicate how the calculation should be pre-
formed. (How intermediates should be defined) Therefore in order to determine tabcdeijklm the
following sequence of calculations(and intermediates) should be performed.

Xabc
ijk1

= tabij1V
j1c
jk1

(3)

Xabcd
ijkl1

= Xabc
ijk1

V k1d
kl1

(4)

tabcdeijklm = Xabcd
ijkl1

V l1e
lm (5)

26

The energy expression should be pre-formed using the following sequence.

Y abcd
ijkl1

= tabcdeijklmV
lm
l1e

(6)

Y abc
ijk1

= Y abcd
ijkl1

V l1k
dk1

(7)

Y ab
ijl

= Y abc
ijk1

V k1j
cj1 (8)

E = Y ab
ij1
V ij1
ab (9)

This is not an exhaustive test but should serve as an adequate initial set of expressions
to evaluate in order to determine if we have any reasonable way to handle multidimensional
arrays.

3.3.5 Example formula using high-rank arrays (Dmitry)

To implement multirefrence CC methods, it is necessary to code expressions that involve
very rank, up to rank 16 has been seen. Fortunately there are some conditions that limit
the size of the arrays involved.

The conventions to indicate the type of indices are as follows:

• J - open active hole;

• j - open inactive hole;

• B - open active particle;

• b - open inactive particle;

• l - free general hole;

• K - free active hole;

• k - free inactive hole;

• d - free general particle;

• C - free active particle;

• c - free inactive particle.

An idex is called open when it has a fixed value, and free when it is summed or contracted
over. The Total range of molecular orbitals is NORB and is divided into four regions shown
in Table 6 General hole/particle index range is split into the direct sum of inactive and
active subranges. The active subrange is small. The inactive subrange is a compliment to
the active subrange.

All the formulae below correspond to the follwoing operator product:

27

d
b, c

virtual, inactive, large
(also called particles)

d
B, C

virtual, active, very small
(also called particles)

l
J, K

occupied, active, very small
(also called holes)

l
j, k

occupied, inactive, small
(also called holes)

Table 6: The types of orbitals in expressions that need high-rank arrays.

Z+=L*H*S

where

• H is the Hamiltonian operator;

• S is a 4-fold excited amplitude;

• L is a 8-fold excited Lambda coefficient;

• Z is a residual tensor corresponding to 6-fold excited Lambda coefficient.

Diagram nr 1

Zj1J1J2J3J4J5

b1b2B1B2B3B4
+ = LJ1J2J3J4J5k1k2K1

B1B2B3B4d1d2C1C2
∗Hj1K2

b1b2
∗ Sd1d2C1C2

k1k2K1K2
(10)

Diagram nr 11

Zj1J1J2J3J4J5

b1B1B2B3B4B5
+ = Lj1J1J2J3J4l1K1K2

B1B2B3B4d1d2C1C2
∗HJ5l2

b1B5
∗ Sd1d2C1C2

l1K1K2l2
(11)

Diagram nr 15

Zj1j2J1J2J3J4

B1B2B3B4B5B6
+ = Lj1j2J1J2J3K1K2K3

B1B2B3B4d1d2C1C2
∗HJ4l1

B5B6
∗ Sd1d2C1C2

K1K2K3l1
(12)

28

Diagram nr 23

Zj1J1J2J3J4J5

b1B1B2B3B4B5
+ = Lj1J1J2J3J4l1K1K2

b1B1B2B3d1C1C2C3
∗HJ5l2

B4B5
∗ Sd1C1C2C3

l1K1K2l2
(13)

Diagram nr 31

Zj1J1J2J3J4J5

b1b2B1B2B3B4
+ = LJ1J2J3J4J5l1K1K2

B1B2B3B4d1d2C1C2
∗Hj1l2

b1b2
∗ Sd1d2C1C2

l1K1K2l2
(14)

Diagram nr 67

ZJ1J2J3J4J5J6
b1b2B1B2B3B4

+ = LJ1J2J3J4J5J6l1K1
b1B1B2B3d1C1C2C3

∗H l2K2
b2B4
∗ Sd1C1C2C3

l1K1l2K2
(15)

Diagram nr 72

Zj1J1J2J3J4J5

b1b2B1B2B3B4
+ = Lj1J1J2J3J4J5K1K2

b1b2B1B2C1C2C3C4
∗H l1l2

B3B4
∗ SC1C2C3C4

K1K2l1l2
(16)

Diagram nr 79

Zj1j2J1J2J3J4

b1B1B2B3B4B5
+ = LJ1J2J3J4l1l2K1K2

B1B2B3B4B5c1c2C1
∗Hj1j2

b1C2
∗ Sc1c2C1C2

l1l2K1K2
(17)

Diagram nr 95

ZJ1J2J3J4J5J6
b1b2B1B2B3B4

+ = LJ1J2J3J4l1l2K1K2
b1B1B2B3B4d1C1C2

∗HJ5J6
b2d2
∗ Sd1C1C2d2

l1l2K1K2
(18)

Diagram nr 119

Zj1j2J1J2J3J4

b1B1B2B3B4B5
+ = Lj1j2J1J2K1K2K3K4

B1B2B3B4B5d1C1C2
∗HJ3J4

b1d2
∗ Sd1C1C2d2

K1K2K3K4
(19)

Diagram nr 126

Zj1j2J1J2J3J4

B1B2B3B4B5B6
+ = Lj1J1J2J3J4l1K1K2

B1B2B3B4B5c1c2C1
∗Hj2l2

B6C2
∗ Sc1c2C1C2

l1K1K2l2
(20)

Diagram nr 132

Zj1J1J2J3J4J5

b1B1B2B3B4B5
+ = LJ1J2J3J4J5k1k2K1

b1B1B2B3B4d1C1C2
∗Hj1K2

B5d2
∗ Sd1C1C2d2

k1k2K1K2
(21)

Diagram nr 169

ZJ1J2J3J4J5J6
B1B2B3B4B5B6

+ = LJ1J2J3J4J5l1K1K2
B1B2B3B4B5d1C1C2

∗HJ6l2
B6d2
∗ Sd1C1C2d2

l1K1K2l2
(22)

Diagram nr 188

Zj1J1J2J3J4J5

B1B2B3B4B5B6
+ = Lj1J1J2J3J4J5k1K1

B1B2B3B4B5d1C1C2
∗H l1K2

B6d2
∗ Sd1C1C2d2

k1K1l1K2
(23)

Diagram nr 191

ZJ1J2J3J4J5J6
b1B1B2B3B4B5

+ = LJ1J2J3J4J5J6l1K1
B1B2B3B4B5c1c2C1

∗H l2K2
b1C2
∗ Sc1c2C1C2

l1K1l2K2
(24)

Diagram nr 294

Zj1J1J2J3J4J5

b1B1B2B3B4B5
+ = Lj1J1J2J3J4J5k1K1

b1B1B2B3B4B5c1C1
∗H l1K2

d1C2
∗ Sc1C1d1C2

k1K1l1K2
(25)

29

Diagram nr 300

Zj1J1J2J3J4J5

B1B2B3B4B5B6
+ = Lj1J1J2J3J4J5k1K1

B1B2B3B4B5B6d1C1
∗H l1K2

d2C2
∗ Sd1C1d2C2

k1K1l1K2
(26)

Diagram nr 317

Zj1J1J2J3J4J5

b1B1B2B3B4B5
+ = Lj1J1J2J3J4J5K1K2

b1B1B2B3B4B5C1C2
∗H l1l2

d1d2
∗ SC1C2d1d2

K1K2l1l2
(27)

It is clear from this sample of expressions that all possible contractions will occur and
that there is no benefit in optimizing one combination over the others.

The S, L, and Z tensors obey the restrictions that they cannot contain more than two
inactive or general holes and no more that two inactive or general particles. Since the active
range of all indices is typically small, from 4 to 10, this limits all indices in these tensors
to that small range for all indices except four, in the worst case of two inactive or general
holes and two inactive or general particles. In Table 7 we show the sizes of data blocks for
these arrays using some example values for segments, subsegments, and active ranges. For
simplicity, we assume that the subsegment size is the same as the active range, which is
reasonable for estimates since they are of the same order of magnitude and quite small. The
storage reduction for an array with rank p from symmatric packing is estimated by reducing
full storage need, given by Np, by the factor 2p. For some arrays, only partial symmetry can
be used, then the formula is applied to the subset of indices.

segment subsegment active range rank full rank active block size (max/min)
H 28 - - 4 0 5 MB / 0.6 MB
L - 4 4 4 12 8 GB / 0.5 MB
S - 4 4 4 4 0.5 MB / 2 KB
Z - 4 4 3 9 34 MB / 32 KB

Table 7: Block sizes for high-rank arrays. We assume that the subsegment size and the
active range are the same in this estimate, since they are of the same order of magnitude.
An entry in the table as a dash means that that value does not contribute to determine the
block size. The block size ranges from minimum, when all super indices are equal and the
block can be packed with full symmetry, to maximum, when as many of the super indices
are different as possible and the block can not be packed fully as a result.

3.3.6 Index schemes for packed storage of arrays

When high-rank arrays need to be stored the size of the needed storage grows quickly and
it becomes increasingly important to ensure that the minimal amount of space needed is
actually required. There is, however, a balance between compact storage and efficient access
that mustbe taken into consideration. In this section, we will discuss the considrations and
techniques that are commonly used to address this balance.

Every programming language that support multi-dimensional arrays uses the compiler
to generate code to compute a combined index that progresses linearly through all elements
of the array. For example, the array declared in Fortran 95 with

30

dimension a(10,10,10)

can be accessed in a loop as

sum = 0.d0

do k=1,10

do j=1,10

do i=1,10

sum = sum + a(i,j,k)

end do

end do

end do

The compiler translates this into something that can be described as the literal translation
of the following code in Fortran 95. The convention in Fortran is that the first index changes
first or fastest. This is called “storage by column”.

sum = 0.d0

do k=1,10

do j=1,10

do i=1,10

sum = sum + a(i + (j-1)*10 * (k-1)*10*10)

end do

end do

end do

Thus the two sections of code will result in accesses of the memory locations of the array
a in sequence starting with a(1), a(2), a(3), etc. Other languages like C/C++ work the same
way with one important difference: The first index runs the slowest. This is called “storage
by row”. The same operation would then look like the following

sum = 0.;

for (i=0,k<10,k++) {

for (j=0,k<10,k++) {

for (k=0,k<10,k++) {

sum += a[i*10*10 + j*10 * k]

};

};

};

Although the first code segment using a(i,j,k) looks more closely to the mathematical
expression about the array, programmers have found that for large scale projects this can
lead to inefficient computation, or wasteful use of memory for storage, or both. For example,
the implied computation of the index i + (j-1)*10 * (k-1)*10*10 involves multiple operations
that can become a problem if many arrays are being used. For this reason, optimizing
compiler replace the code obove with something that looks like the literal translation of

31

sum = 0.d0

n = 0

do k=1,10

do j=1,10

do i=1,10

n = n + 1

sum = sum + a(n)

end do

end do

end do

Now the multiple multiplications and additions are replaced by a single increment of
a counter in the inner loop. Other more sophistocated optimizations are in use, but this
suffices for our purpose of showing that index manipulations must be given consideration
in code with extreme high-performance requirements. Note that the optimization make the
loop no longer parellelizable: Every iteration requires all previous iterations to be executed
for the incremented counter n to point to the correct place. The code with the direct index
computation can immediately be parallelized, because the index depends only on the values
of i, j, and k and can be computed independently on many processors for different parts
of nested loops. Of course, the sum computation needs some attention to give the correct
result in a parallel execution.

The space optimization can be illustrated by considering the case where the array a has
a symmetry. For example, consider a two-dimensional array, a matrix, that is symmetric
a(i,j)=a(j,i). Then we can store 10*10=100 numbers of which only the 10 diagonal elements
and the 10*9/2=45 elements below the diagonal are unique or we can store only the unique
45+10=55 elements. We can do this by declaring a as a single-dimension array, a vector,
with length (10*(10+1))/2=55 and accessing it with the following index computations, using
Fortran in the example,

double precision a[55]

sum = 0.d0

do j=1,10

do i=1,j

sum = sum + a(i+(j*(j+1))/2)

end do

end do

Again optimizations to simplify index computations must be balanced with the need to
allow parallelism. To make the code more readable, one often defines an intermediate index

double precision a[55]

sum = 0.d0

do j=1,10

do i=1,j

ij = i+(j*(j+1))/2

sum = sum + a(ij)

32

end do

end do

This same type of construction can be used recursively to store hig-rank arrays with
multiple levels of symmetry compactly. For example, the 8-fold symmetry of the two-electron
integrals is

v(i, j, k, l) = v(j, i, k, l) = v(i, j, l, k) = v(j, i, l, k)

= v(k, l, i, j) = v(l, k, i, j) = v(k, l, j, i) = v(l, k, j, i) (28)

This can be stored compactly by combining indices i and j into a symmetrically packed index
ij as in the example of the symmetric matrix above. The same can be done for k and l. Then
the two packed indices ij and kl can be packed again the same way into ijkl. Assuming a basic
dimension of 10, the length of the 4-index integral array v becomes 55*(55+1)/2=1,540. The
code then becomes

double precision v[1540]

sum = 0.d0

do l=1,10

do k=1,l

kl = k+(l*(l+1))/2

do j=1,10

do i=1,j

ij = i+(j*(j+1))/2

if (ij <= kl) then

ijkl = ij + (kl*(kl+1))/2

sum = sum + a(ij)

end if

end do

end do

end do

end do

Notice that we used a simple IF-statement to avoid including the cases ij ¿ kl. There
are other ways to accomplish this but not a single best one that is simple and fast. In other
words there is no simple bound on j that will ensure that we alsways have ij¡=kl.

Various optimizations are possible and different strategies can be used depending on the
code in the body of the loops and on wether other arrays are involed that need similar
intermdiate packed indices. Once two arrays are constructed with the packing then a full
contraction can be done very efficiently.∑

i<=j,k<=l,ij<=kl

v(i, j, k, l)a(i, j, k, l) (29)

can be coded simply as

double precision v(1540), a(1540)

33

sum = 0.d0

do ijkl=1,1540

sum = sum + v(ijkl)*a(ijkl)

end do

For antisymmetric matrices the index computation is

double precision a[45]

sum = 0.d0

do j=1,10

do i=1,j-1

ij = i+(j*(j-1))/2

sum = sum + a(ij)

end do

end do

Below is a summary of the basic index packing schemes.

ij_symm = i + (i*(i+1))/2

ij_asymm = i + (i*(i-1))/2

ij_col = i + (j-1)*N

ij_row = (i-1)*N + j

Because of the limitation in the Fortran language that arrays can have no more than 7
indices, some programs used the basic columnwise and rowwise index calculations to imple-
ment arrays of arbitrary and of dynamic rank.

High-rank arrays with various combinations of symmetric, antisymmatric, columnwise,
and rows wise stored hierarchies of index pairs can be constructed. Managing the indices
is not a simple task and requires attention from the program designed, because very poor
performance can result and automatic optimization techniques in compilers usually cannot
recognize and optimize hierarchies deeper than two.

PROPOSED

3.3.7 Support for high-rank arrays *

Index of proposed changes with author 1.1
Currently SIAL supports indices with up to 6 indices. This can be changed by a setting
mx array index in ACESIII/include/maxdim.h.
For arrays defined with both simple indices and segmented indices, the simple indices
must be at the end of the declaration. For example A(a,b,c,d,m,n) with a,b,c,d block in-
dices and m,n simple indices is correct. As a reminder, segmented indices like AOINDEX
and MOINDEX are indices that count segments; simple indices count like integers.
NOTE The original design for SIAL arrays included support for symmetric storage.
This has not been implemented at this time, but will be very important to save space

34

and simplify expressions when high-rank arrays are being used. To implement this is
well-understood and easy, so it will be not discussed in this section. We assume that
that symmetric storage will be implemented as part of this effort. The symmetry applies
both to the super indices labeling blocks and to the regular indices labeling the elements
inside each block.

3.3.8 Proposal: Support arbitrary rank in SIAL

We propose the extend the SIAL support to have unlimited rank for arrays. The under-
lying structure of segmented indices and and block lists can easily occomodate providing
the SIAL programmer with the luxury and arbitrary rank. The underlying super in-
structions can be written, possible with machine-gerenated code, using the standard
techniques to overcome the limitation in the Fortran stanndard of 7 indices and will still
produce high performance for tensor contractions at the block level.
The challenge is to find the proper data management approach to keep the performance
of SIP as high as it is now. We analyze the problem next.
Consider the implications derived from the expressions in Sect. 3.3.5 in view of the
requirements that any block-centered architecture such as SIA has to allow an efficient
implementation.

1. All data blocks should have close to the same size, although smaller blocks are easy
to support and will not impact performance if there ar not too many. The limit
of small blocks is a single floating point number, which we know does not perform
well and is the reason for considering SIA in the first place. Huge blocks on the
other hand become unmanagable, clog up the communication system buffers and
local RAM, and do not offer any performance advantages.

2. The current 4-index implementation works well for integral blocks H and T -
amplitude blocks in the CCSD algorithm.

3. Mixing segmented indices with simple indices is suitable if the algorithm clearly
distinguishes some indices as much more floating point intensive than others. Then
the less intensive indices can be considered low-speed book-keeping indices and
these can be treated as in scalar-orianted architectures (as opposed to the block-
oriented SIA) without much performance loss.

4. Contractions of blocks should have sufficient number of indices to contract so that
the underlying DGEMM can run optimally, contraction over a single index of blocks
from arrays with high ranks is inefficient.

From the previous section, we see the following charactersitics of code that will be gen-
erated by the SIAL compiler, whatever language feature we use to specify the formulas
in code.

1. High rank arrays will have a limited number of full-range indices. These can be
defined with subsegments so that contractions with the Hamiltonian, defined with
full segments, work optimally.

35

2. High rank arrays will have most indices of the type active, which have a small range
that can easily be chosen to be equal to the size of a subsegment or just one or two
subsegments.

3. Because of the high rank, the impact of symmetric packing on storage is very big.
This results in blocks that a very different in size.

We are thus lead to making our storage scheme even more flexible and less regular,
compared to Globale Arrays and ScaLAPACK block cyclic storage scheme, than we
already have done with in the current implementation.

3.3.9 Proposal: Use compound indices in SIAL

In traditional Fortran and C implementations of electronic structure algorithms that
require arbitrary large numbers of indices on tensors, such as high-order coupled cluster
(CC) methods and configuration interaction (CI) up to full CI, have used compound
indices. The basic strength of SIAL includes that operation on blocks and the use of
super indices to express the algorithm. It is not immediately clear how the notion of
super indices and blocks can be extended to compound indices.
We propose to follow the standard approach for defining multiple indices, similar to the
method defined in Fortran, both for addressing the blocks as well as the numbers inside
the blocks. Assume an array that is to be used as a four-index array and that each index
is segmented in N sections of n elements. We then declare the block numbering and the
indexing inside the blocks with the usual compound index expression

IJKL = I + (J-1)*N + (K-1)*N**2 + (L-1)*N**3

ijkl = i + (j-1)*n + (k-1)*n**2 + (l-1)*n**3

We can now address the blocks without the need for renumbering by various combinations
of less-compound indices

(I,JKL) = (IJ,KL) = (I,J,K,L) = IJKL

Similarly, we can access each number inside a block by various compound-index combi-
nations without the need for (expensive) rearrangement of data

(i,jkl) = (ij,kl) = (i,j,k,l) = ijkl

The examples above use the same segment size for all dimensions. This can be easily gen-
eralized. This generalization is important because without it the size of high-dimensional
blocks will becomes too large for practical and high-performance work.
The compound-index scheme can be easily generalized to support forms of symmetric
packing, which is very important for high-dimensional matrix objects like Coupled Clus-
ter amplitudes. For example, the four indices of T2 can be packed with the restriction
that i < j, k < l, and ij < kl to store every unique element only once.

36

ij = j*(j-1) + i

kl = l*(l-1) + k

ijkl = kl*(kl-1) + ij

= (l*(l-1)+k)*(l*(l-1)+k-1) + j*(j-1) + i

3.4 Control statements

1. Program

• sial myprog
start of the SIAL program called myprog. With this control line the program
can be embedded in any file and all text preceding this line is ignored by the
assembler. The line must start with white space or the reserved word sial.

• endsial myprog
marks the end of a SIAL program. Everything in the file after that is ignored by
the assembler.

2. Procedures

• proc mywork
start of a procedure called mywork. Procedures are only a tool to organize ex-
ecutable code, they are not to be compared to functions in C or subroutines in
Fortran. They are like internal procedures in Fortran 90 and they operate in the
one global scope of the SIAL program.

– The proc end proc code block is inside the body of the sial end sial program
definition.

– Declarations are not allowed inside the proc body. The procedure can use
temp arrays, but they must be declared in the scope of the main program.

– All indices and arrays defined in the program are visible inside all procedures.

– Procedures are like declarations and must be located after other declarations
and before any executable statements.

• endproc mywork
end of the procedure called mywork. No other procedure can be defined inside
it. All other control structures must be closed before this line, except end sial
and that one may not be closed, i.e. the procedure must be inside the program
definition.

• return
exits the running procedure and returns execution to the statement after the call
to the procedure.

37

• call mywork
calls the previously defined procedure mywork; at the end of the procedure or at
execution of a return statement control returns to the line after the call to the
procedure.

3. Distribution

• pardo mu,nu,lambda,sigma
starts a distributed loop over the indices mu,nu,lambda,sigma. The work inside
the loop is performed by every task only for those values of the listed block indices
that have been assigned by the master to that task as controlled by the parallel
environment directives.

• pardo mu,nu,lambda,sigma
where condition
starts a distributed loop over the indices mu,nu,lambda,sigma for all values of the
indices that satisfy the logical condition after the “where” keyword. The work
inside the loop is performed by every task only for those values of the listed block
indices that have been assigned by the master to that task as controlled by the
parallel environment directives.

• endpardo mu,nu,lambda,sigma
ends the distributed loop with variables mu,nu,lambda,sigma; the variables must
be specified. pardo structures cannot be nested, improperly nested loops generate
an assembly error. Two consecutive distributed loops are allowed and can use the
same index variables or different variables without error. Use of different names
will not change the ranges assigned to each task.

4. Iteration

• do mu
starts a loop over the index mu. The do statement is operationally equivalent to
incrementing the loop index.

• enddo mu
ends the loop with variable mu; the variable must be specified; improperly nested
loops generate an assembly error. Two consecutive loops can use the same index
variable without error.

• cycle mu
makes control in the loop jump to the next iteration of the loop on the vari-
able named on the cycle statement; a cycle statement without a variable name
generates an assembly error.

• exit
makes control in the loop jump to the statement after the end do of the closest
loop enclosing the exit statement.

38

5. Conditions

• if a<3
starts an if-block with test on the scalar or index variables or expression on scalar
or index variables. If the expression contains at least one scalar variable all com-
putations in the expression are evaluated as C double or Fortran double precision,
if the expression contains only index variables and integers, the expression is eval-
uated as C int or Fortran integer. Constants such as 3 or 3. are treated as integers
and floats, respectively. The code inside the block is executed if the expression
value is non-zero (true).

• endif
ends the if-block; improperly nested if-blocks generate an assembly error.

• else
starts the alternative code block in the if-block; improperly nested if-blocks gen-
erate an assembly error.

3.4.1 Subindices

SIAL handles large arrays by partitioning each dimension into segments. In SIAL source
code, one might find a reference to X(i,j). Here, i and j are segment indices so X(i,j)
actually refers to a block of data. For example, is the segment size in both dimensions is 10,
then X(1,2) actually refers to the block X([1:10],[11:20]) if we view the array with normal
indices. An operation like X(i,j)*V(j,k) is implemented by a super-instruction that accesses
the individual elements of the two blocks. The segment sizes are chosen to give appropriate
granularity in the application. Data is moved in blocks, and operations on a block perform
enough work that communication and computation can be overlapped. The segment size is
fixed at initialization time and is not available in the SIAL source.

This approach fails in situations where many dimensional, say 6-dimensional, arrays
are generated. For example, A(a,b,c,k)*B(k,l,m,n) generates a 6 dimensional result, say
C(a,b,c,l,m,n). If the segment size of the indices are chosen to be typical values for segments
, then the block of C is so large that the computation becomes infeasible. If the segment
sizes are made smaller, then the blocks of A and B become too small for the rest of the
computation to exhibit good performance.

The goal is to be able to conveniently partition the blocks of A and B, so that C could
be computed in smaller blocks without changing the actual segment sizes of A and B.

To do this, we propose a set of new language features: subindex, do/pardo in, and slices
and insertions.

subindex ii of i

• The superindex i must be a previously declared index with range [lower(i) , upper(i)]
and segment size seg(i).

• ii is given a segment size seg(ii) specified using the same mechanism as seg(i) subject to
the constraint that seg(i)%seg(ii)=0. In particular, a segment size of 1, corresponding
to a simple index is allowed.

39

• The range of ii is [(lower(i)-1)*n+1,upper(i)*n] where n = seg(i)/seg(ii).

• The subindex inherits the type from its superindex.

• Subindices may be used to declare arrays. An array declared with a subindex will
contain the same number of data items as an otherwise equivalent array declared with
its superindex.

Example 1:
Suppose that baocc = 1, eaocc = 20, seg(i)=20, and seg(ii)=4. Then ii has range [1,100].

If baocc=2, then ii has range [6,100].

moaindex i = baocc, eaocc

subindex ii of i

When fully formed, these arrays contain the same total number of data elements, but
the blocks of Xii are the size of the blocks of Xi.

temp Xi(i)

temp Xii(ii)

do ii in i, pardo ii in i

• This is a loop over the values of ii that fall within the block specified by i, i.e. ii ranges
from first = (i-1)*n+1 to first+seg(ii) where n = seg(i)/seg(ii).

• i must have a well defined value, which implies that this construct must be nested
inside a do or pardo loop over i.

• i must be the superindex of ii

• It is also possible to use ii in a normal loop. This will iterate over the entire range of
ii.

Example 2

do i

do ii in i

Xii(ii)=0

enddo ii

endo i

is equivalent to

do ii

Xii(ii)=0

enddo ii

Example 3

40

pardo i

do ii in i

xii(ii)=0

enddo ii

endpardo i

This will perform a serial iteration over blocks 1,2,3,4,5 at one processor in parallel with
a serial iteration over blocks 6,7,8,9,10 at another, in parallel with a serial iteration over
blocks 11,12,13,14,15 at another, etc.

Example 4

do i

pardo ii in i

Xii(ii)=0

endpardo ii

endo i

This construct would first initialize blocks 1,2,3,4,5 on five different processors in parallel,
then initialize blocks 6,7,8,9,10 on five processors in parallel, etc.

Slices and insertions

Xii(a,ii) = Xi(a,ii)

Xi(a,ii) = Xii(a,ii)

where Xi was declared using indices a and i, Xii was declared with indices a and ii, ii is
a subindex of i, and a is an arbitrary index.

• The right hand side of the first assignment refers to the portion of Xi determined by
the subindex ii. Since Xi was declared with index i, but we are referring to it with
index ii, this is slice. In this context, the subblock is copied into the smaller block on
the left hand side.

• The second assignment takes the smaller block on the right side and inserts it into the
appropriate location in the larger block on the right hand side. This is an insertion.

• In both cases, the compiler can easily determine that these are slicing or inserting
assignments from the declarations.

• Design decision under consideration: Should use of a slice be restricted to the right
side of assignments, or allowed anywhere where a block of compatible type is allowed?
For example, would

Yii(a,ii) = Xi(a,ii) + B(a,ii)

be legal, or would we need to say

Xii(a,ii)= Xi(a,ii)

Yii(a,ii) = Xii(a,ii) + B(a,ii)

41

The former is more convenient for the programmer and may be potentially more ef-
ficient since it may reduce the amount of copying required if the super instruction
implementing “+” is implemented in an appropriate way. If the super instruction
implementation does not know about subindices, the compiler could generate the nec-
essary copy instruction. The latter is more straightforward and will not require changes
in any super instruction (except the slicing and inserting assignments).

Example 5

pardo a

do i

get Xi(a,i)

do ii in i

Xii(a,ii) = Xi(a,ii)

do something with Xii(a,ii)

enddo ii

endo i

endpardo a

Example 6
In this example, we look at the CCSD RHF SV1 program that motivated these features.

Instead of comparing with the actual working implementation using simple indices for two
dimensions of a six dimensional array, we start with the straightforward solution that one
have like to have written if it had been feasible. The example indicates how to change it to
an implementation that is feasible using the new language features.

Straightforward, but infeasible version.

SIAL CCSD_RHF_SV1

moaindex i= baocc, eaocc

moaindex j= baocc, eaocc

moaindex k= baocc, eaocc

moaindex i1= baocc, eaocc

moaindex j1= baocc, eaocc

moaindex k1= baocc, eaocc

moaindex a = bavirt, eavirt

moaindex a1= bavirt, eavirt

moaindex a2= bavirt, eavirt

moaindex a3= bavirt, eavirt

served VSaaai(a,a1,a2,i1)

served TSaiai(a3,i1,a1,j1)

temp taaaiii(a,a1,a2,k1,i1,j1)

42

--

BEGIN MAIN PROGRAM

#

#

Read transformed integrals from lists

#

CALL READ_2EL #standard code for this proc omitted

PARDO a, a1, a2

IF a <= a1

IF a1 <= a2

First do the expensive part involving 3-virtual integrals and

of order VVVVooo

DO a3

DO k1

REQUEST VSaaai(a,a3,a2,k1) a

DO j1

IF j1 <= k1

DO i1

IF i1 <= j1

REQUEST TSaiai(a3,i1,a1,j1) a3

#this is where we have a problem, blocks of t1aaaiii are too big.

taaaiii(a,a1,a2,k1,i1,j1)=

VSaaai(a,a3,a2,k1)*TSaiai(a3,i1,a1,j1)

ENDIF

ENDDO i1

ENDIF

ENDDO j1

43

ENDDO k1

ENDDO a3

#

#

ENDIF

ENDIF

#

ENDPARDO a, a1, a2

#

#

execute sip_barrier

#

ENDSIAL CCSD_RHF_SV1

Feasible computation using new language features Now, we give a new version of this
code using the language new features introduced. The changes to the above are indicated
with a trailing ##..

SIAL CCSD_RHF_SV1

moaindex i= baocc, eaocc

moaindex j= baocc, eaocc

moaindex k= baocc, eaocc

moaindex i1= baocc, eaocc

subindex ii of i1 ##

moaindex j1= baocc, eaocc

subindex jj of j1 ##

moaindex k1= baocc, eaocc

moaindex a = bavirt, eavirt

moaindex a1= bavirt, eavirt

moaindex a2= bavirt, eavirt

moaindex a3= bavirt, eavirt

served VSaaai(a,a1,a2,i1)

served TSaiai(a3,i1,a1,j1)

temp TSaiaiSub(a3,ii,a1,jj) ##

44

temp taaaiii(a,a1,a2,k1,ii,jj) ##

--

BEGIN MAIN PROGRAM

#

#

Read transformed integrals from lists

#

CALL READ_2EL #standard code for this proc omitted

PARDO a, a1, a2

IF a <= a1

IF a1 <= a2

First do the expensive part involving 3-virtual integrals and

of order VVVVooo

DO a3

DO k1

REQUEST VSaaai(a,a3,a2,k1) a

DO j1

IF j1 <= k1

DO i1

IF i1 <= j1

REQUEST TSaiai(a3,i1,a1,j1) a3

DO jj in j1 ##

DO ii in i1 ##

#Now, the blocks of t1aaaiii are smaller because

we have used subindices on the fourth and fifth dimension.

#

#Note that the contraction is just an ordinary contraction, no special

machinery is needed.

#

45

#If we allow slices in arbitrary contexts, then the (explicit)

introduction of TSaiaiSub is not needed and the contraction

would simply be

VSaaai(a,a3,a2,k1)*TSaiai(a3,ii,a1,jj)

TSaiaiSub(a3,ii,a1,jj) = TSaiai(a3,ii,a1,jj) ##

t1aaaiii(a,a1,a2,k1,ii,jj)= ##

VSaaai(a,a3,a2,k1)*TSaiaiSub(a3,ii,a1,jj) ##

ENDDO ii

ENDDO jj

ENDIF

ENDDO i1

ENDIF

ENDDO j1

ENDDO k1

ENDDO a3

#

#

ENDIF

ENDIF

#

ENDPARDO a, a1, a2

#

#

execute sip_barrier

#

ENDSIAL CCSD_RHF_SV1

#

PROPOSED

3.4.2 PARDO with processor-groups *

Index of proposed changes with author 1.1
To write code that exhibits maximum parallelism, it is often useful to be able to indicate
to the runtime environment that a certain PARDO construct should be given a limited

46

Work SIAL code G1 G2 G3 G4
pre pgroup 9 NG * * * *
NG is now 4
set pgroup 1 Y N N N

10 % pardo i,j,k * - - -
10 % pardo l,m,n * - - -

set pgroup 2 N Y N N
30 % pardo a,b,c - * - -

set pgroup 3 N N Y N
30 % pardo p,q,r - - * -

set pgroup 4 N N N Y
20 % pardo t,u,v - - - *

set pgroup 0 Y Y Y Y
sip barrier * * * *

Table 8: A simple program using proces groups.

number of processors, rather than that it should try the standard work distribution or
dynamic load balancing.
Then a PARDO will be executed by a group of processors, using any defined form of work
distribution within the group for all index combination on the PARDO statement. Then,
provided that there is no synchronization after the PARDO, the runtime environment
can assign remaining processors, outside of that group, to execute the code after the
PARDO. This way multiple PARDOs can be executing on multiple groups of processors
in parallel. Each PARDO, for example, may be known to scale well up to 1,000 cores.
Then a code with 10 PARDOs, will scale well up to 10,000 cores.
To define the appropriate groups an estimate of the work in the code with the set of
PARDOs must be made. This is similar to the performance model and we can plan
to use the performance model to generate this information during the dry-run phase of
the execution. On small numbers of cores the groups would all become the group of all
workers.
The information about the group and their relative size needs to be conveyed in some
way by the programmer. We can think of this feature as a fully automated one, but that
may lead to unexpected performance results. It seems desirable to allow the programmer
to either express this in SIAL or to provide hints to the compiler and the runtime system
through pragmas. This is a well-known technique familiar to programmers.
To focus the discussion, we explain a proptotype if these ideas that is being implemented
in the existing SIAL and SIP environment. The application is the linear part of the
perturbative triples code that is known to scale well because it has a lot of inherent
parallelism. Here we sketch how we use processors groups to maximally expose this
parallelism.
In Table 8 we give an overview of the work (vertical axis) and the processors (horizontal
axis) involved in a SIAL program that uses process groups. A “*” indicates that the

47

processor is working, a “-” indicates that it skips the code block.
The argument “9” to the spcial super instruction pre pgroup indicates the “triples for-
mation” of groups, which is coded in the instruction. (The word formation is used here
as in a formation of birds or aiarplanes.) The instruction has a section of code that knows
how to set up the process groups for a given formation identifier, which is a number set
by convention. The number 9 is chosen arbitrarily to indicate the triples formation. The
second argument receives the number of process groups that the instruction has defined.
The instruction takes into accoun the total number of available processors, as well as the
size of the problem. This is written by hand in the example implementation, but could
be the result of the performance model.
In the example pre pgroup returns that 4 processor groups have been set up. Each
processor group has a number of workers determined to enuser that the work given to
each group will take about the same time, so that all groups run into the barrier at about
the same time.
Note that before the barrier is called, the set prgoup 0 sets the group back to the group
zero of all workers.
It is important in this example implementation to realize that processor group require a
section of code that consists on only PARDO blocks without any intervening serial code,
except set pgroup calls. This is required because only the PARDO instruction has been
modified to pay attention to the processor group infrastructure and skip execution of the
PARDO body when the processor is not a member of the active group.
The actual perturbative triples code fragment looks a bit more complicated than is shown
in the table. The index IG runs over process groups. The special super instruction set ijk
defines ranges for three nested do-loops that perform the work. The index IT runs over
the complete set of value triples for i,j,k and the code in the body of the do-loop over IT
computes the necessary values for i, j, and k for each value of IT. The code inside the
special superinstructions pre pgroup for group formation number 9 and the code inside
set ijk must agree on how to divide up the work.

execute pre_pgroup 9 NG # NG is now 4

do IG=1,NG

execute set_pgroup IG

pardo a,b,c

execute set_ijk IG NT

do IT=1,NT

do a batch of work in a merged threefold do

with ranges set by set_ijk

enddo

endpardo

enddo

execute set_pgroup 0

execute sip_barrier

48

PROPOSED

3.4.3 PARDO with grouping *

Index of proposed changes with author 1.1
Currently SIAL offers two types of loops: pardo, and do. For example

pardo i,j

S0(i,j)

do k

S1(i,j,k)

do m

S2(i,j,k,m)

enddo m

S3(i,j,k)

enddo k

S4(i,j)

endpardo i,j

where S0(i,j) is some sequence of statements that may depend on indices i,j, etc. and
where the iterations are independent. The iteration space of the pardo loop, including
the nested do loops is (i, j, k,m) : 1 ≤ i ≤ iu, 1 ≤ j ≤ ju, 1 ≤ k ≤ ku, 1 ≤ m ≤ mu where
iu is the declared upper bound of index i, etc. and for simplicity, assume that the lower
bound of all indices is 1.
When this pardo loop is executed, the iteration space is partitioned so that the minimal
worker task is (i,j,1:ku,1:mu). In other words, for each dimension, we have either a single
value if the index is given in the pardo statement, or the entire declared range of the
index if it is given in the (sequential) do statement. A particular index might be chosen
by the programmer to execute in a sequential loop because it reduces communication
in the particular computation or because it ensures that the granularity of the minimal
task will be large enough.
In practice, the master is likely to assign a chunk of work containing multiple minimal
tasks over some range of values of pardo indices (e.g. i and j) and the SIP implementation
executes these as (implicit) sequential loops over the assigned values of i and j. The pardo
loop would actually be executed in the SIP with something like

do i=i0,i1 !i0,i1 chosen by master for load balance, i0=i1 possible

do j=j0,j1 !j0,j1 chosen by master for load balance, j0=j1 possible

S0(i,j)

do k = k0,k1 !k0=1, k1=ku, entire declared range of k

S1(i,j,k)

do m = m0,m1 !m0=1,m1 = mu, entire declared range of k

S2(i,j,k,m)

enddo m

49

S3(i,j,k)

enddo k

S4(i,j)

enddo j

enddo i

It is desirable to allow more flexible ways to partition the iteration space along a di-
mension. Instead of choosing a single value (if the index is determined by a pardo) or
entire declared range (if the index is determined by a do), allow it to be partitioned into
segments of some intermediate size.
The most straightforward approach (easiest for the compiler writer, and requiring only
minor extensions in the sip to the mechanisms already in place) is to modifying the
syntax of the pardo loop to allow an indication that certain indices should be more
coarsely partitioned, and also introducing a new form of the do statement (stripdo) that
nests inside the pardo. The former maintains the property that parallel execution is
specified in a single place while the latter allows the programmer to maintain control
over how the loops are nested. The parameter given to the strip modifier in the pardo
indicates how many segments that dimension should be partitioned into. It is intended
that this value be a hint rather than a strict value.

pardo i,j,strip(m,10) !i,j partitioned as before, but m partitioned into

S0(i,j)

do k

S1(i,j,k)

stripdo m

S2(i,j,k,m)

endstripdo m

S3(i,j,k)

enddo k

S4(i,j)

endpardo i,j,strip(m,10)

with execution in the SIP as

do i=i0,i1 !i0,i1 chosen by master for load balance, i0=i1 possible

do j=j0,j1 !j0,j1 chosen by master for load balance, j0=j1 possible

S0(i,j)

do k = k0,k1 !k0=1, k1=ku, entire declared range of k

S1(i,j,k)

do m = m0,m1 !m0, m1 chosen by master, approximate size is mu/10

S2(i,j,k,m)

enddo m

S3(i,j,k)

enddo k

S4(i,j)

50

enddo j

enddo i

Note that the first example could also be specified as

pardo strip(i,iu)strip(j,ju), strip(k,1), strip(m,1)

stripdo i

stripdo j

S0(i,j)

stripdo k

S1(i,j,k)

stripdo m

S2(i,j,k,m)

endstripdo m

S3(i,j,k)

endstripdo k

S4(i,j)

endstripdo j

endstripdo i

endpardo strip(i,iu)strip(j,ju), strip(k,1), strip(m,1)

where strip(i,iu) specifies the i dimension is broken into iu segments each of size one, and
strip(k,1) indicates that the k dimension has only one segment that thus must contain
the entire range.
However, it is not clear how this would interact with load balancing.

3.5 Operation statements

Any operation statement can include one or more valid array references, This means that

1. the array has been declared

2. each index has been declared

3. the type of each index used is the same as the type of the matching index in the
declaration of the array

4. the range of each index used is a subrange of the range of the matching index in the
declaration of the array

Any array reference that violates these conditions generates an assembly error. The assembler
uses the predefined relationships between predefined constants to determine whether the
range of an index is a subrange of the range of another index.

1. operations: +, -, *, ˆ ==, <, >, <=, >=, && (and), (or), ! (not)

2. operation-assignments: +=, -=, *=

51

3. allocate v3(mu,*,lambda,*)
allocates all blocks for arrays declared as local; the blocks with the matching indices are
allocated and are then available for processing; the allocate statement allows the user
to specify partial allocation by listing the index explicitly, implying that only blocks
with the (segment) value of the index at the time the allocate statement is executed
will be allocated; specifying an index as the wildcard ”*” allocates blocks for all values
of the matching index as defined in the declaration of the local array; an allocate on
any other array is an error.

4. deallocate v3
deallocates all blocks for arrays declared as local; if no allocate has been executed for
the local array when deallocate is executed, the deallocate is an error.

5. create v3
allocates all blocks for arrays declared as distributed; in each task the blocks with the
correct indices, e.g. as assigned by the master task to each task, are allocated and are
then available for local processing; a create on any other array is an error.

6. delete v3
deallocates all blocks for arrays declared as distributed; if no create has been executed
for the distributed array when delete is executed, the delete is an error.

7. destroy v4
removes all blocks of served array v4 from the disk storage and memory buffers of all
IO servers. Served arrays do not have blocks associated with them until a prepare is
issued for each block. Thus at any point in time a served array may have significantly
less storage associated with it than the maximum implied by the declaration. Thus
sparse arrays are automatically stored in a sparse way. This instruction allows the
programmer to completely remove all storage associated with a served array. Then
a new series of prepares can be started, possibly using less storage than the previous
cycle.

8. v3(p,q,r,s) = v2(p,q,r,mu) * c(mu,s)
is an assignment and a contraction. If the shape of the arrays does not match the
contraction an assembly error will result. The order of the indices on the left and the
right of the assignment do not have to be the same.

9. v3(p,q,r,s) = x(p,q) ŷ(r,s)
is an assignment and a tensor product. If the shape of the arrays does not match the
contraction an assembly error will result.

10. v3(p,q,r,s) += a * v1(p,q,r,s)
multiply v1 by a scalar a and add the result to v3. The order of the indices on the left
and the right of the assignment do not have to be the same.

11. v3(p,q,r,s) = a * v1(p,q,r,s)
multiply v1 by a scalar a. v1 and v3 can be the same array. The order of the indices
on the left and the right of the assignment do not have to be the same.

52

12. v3(p,q,r,s) *= a
multiply v3 by a scalar a.

13. put v3(p,q,r,s) = v2(p,q,r,s)
sends the local block of v2 to the owner task of the indicated block of the distributed
array v3 to replace the existing block of v3. The shape and sizes of the blocks must
match, as well as the order of the indices.

14. put v3(p,q,r,s) += v2(p,q,r,s)
sends the local block of v2 to the owner task of the indicated block of the distributed
array v3 to be accumulated there to the existing block of v3. The shape and sizes of
the blocks must match, as well as the order of the indices.

15. get v3(p,q,r,s)
gets the indicated block of a distributed array v3 from the owner task.

16. prepare v4(p,q,r,s) = v2(p,q,r,s)
deliver a block of v2 to the server to replace the block of the served array v4 for future
requests. The shape and sizes of the blocks must match, as well as the order of the
indices.

17. prepare v4(p,q,r,s) += v2(pqp,r,s)
deliver a block of v2 to the server to be added to the block of served array v4 for future
requests. The shape and sizes of the blocks must match, as well as the order of the
indices.

18. request v(mu,nu,lambda,sigma) sigma
for served array v request the block with indicated indices and indicate that the next
request will be for the listed index incremented by one, i.e. sigma+1. This will allow
the SIP to anticipate and start communication that will most likely occur in the next
iteration of the code, typically a loop.

19. prequest t(mu,nu,I,j) = v(mu,nu,a,b)
Partial request. The array v must have been previously prepared. Then the pre-
quest instruction will retrieve a partial block of data (mu,nu,i,j) from the full block of
(mu,nu,a,b). Indices i and j must be declared as ”index”. Indices a and b can be any
index type. Care must be taken to insure that i and j will take on values that are a
sub range of indices a and b.

20. collective a += b
collective operation to add the local variable b from every task into the local variable
a.

21. execute specinstr arg1 arg2 arg3
executes the predefined special instruction specinstr with arguments arg1 arg2 arg3.
See Sect. 6 for a complete list and Sect. 3.5.3 for details on how to write a special
super instruction and make it available for use in SIAL programs.

53

PROPOSED

3.5.1 Parallel library calls *

Index of proposed changes with author 1.1
The execution of a call to an external parallel library like ScaLAPACK is not a super
instruction, since it will involve communication. Thus it is not suitable to make a call
to an external parallel library like ScaLAPACK with the execute operation statement.
A new operation statement needs to be defined to clearly indicate the nature of such
library calls and distinguish them from the execution of special super instructions.

1. execute parallel parallel routine arg1 arg2 arg3
executes the subroutine parallel routine with arguments arg1 arg2 arg3 allowing
and expecting that this routine will perform parallel operations with other tasks.
See Sect. 4.3.6 for the need and an example use of this operation statement.

3.5.2 Synchronization operations

PROPOSED

Index of proposed changes with author 1.1
Currently sip barrier and server barrier are special super instructions listed in Sect 6.
because they are collective communications they do not meet the strict definition of a
super instruction, furthermore they are generic and should be an operation statement in
the language.

1. sip barrier
syntax: sip barrier
function: causes the worker processors to synchronize. Must be used after dis-
tributed arrays are create, before distributed arrays are deleted, and in general
whenever distributed arrays are used a barrier must be placed before the distributed
array can be used.
restrictions: none

2. server barrier
syntax: server barrier
function: causes the server processors to synchronize. Used in a manner similar
to the way the sip barrier is used when using distributed arrays except is relevant
when served arrays are being used.
restrictions: none

54

3.5.3 Super instructions

Super instructions are special compute kernels that perform operations on individual data
blocks, sometimes called super numbers, with the constraint that all data references have
to be to local memory. In other words, they cannot access remote data or perform any
communication with remote tasks.

Special instructions were originally mainly used as temporary super instructions needed
in development of SIAL language features. It provided a quick way to add an instruction
without having to add it to the list of instructions supported by the SIAL compiler. However,
it quickly grew into a way for SIAL programmers to add specialized code with compute
kernels to a SIAL program that was specific to the particular algorithm, not intended for
general use as a SIAL language feature.

Each special instruction has a call-back routine, which is called with a standard argument
list. The argument list gives the instruction access to all tables used by the SIAL runtime,
even though most instructions don’t actually need all of these tables. Typically, the call-back
routine is placed in the ACESIII/sip directory, although there is no requirement to do this.

A special instruction has the following syntax in the SIAL language:

execute special_instruction array1 array2

where special instruction is the SIAL identifier for the instruction, and array1 and array2
are optional array arguments that the instruction may use.

To add the special instruction to the system, its call-back routine must be added to the list
of instructions known to both the SIAL compiler and runtime code. To add the call-back to
the compiler, an entry is added to the list in ACESIII/sip shared/load pre defined routines compile time.f.
To add to the runtime, add an entry to the call-back routine in ACESIII/sip/load pre defined routines.f.
For example, if we were adding the special instruction “foobar”, we would add the following
line to ACESIII/sip shared/load pre defined routines compile time.f:

dummy = load_user_sub(’foobar’//char(0), 0)

We would also add the following code to ACESIII/sip shared/load pre defined routines.f:

external foobar

dummy = load_user_sub(’foobar’//char(0), foobar)

Note that the calls to load user sub must occur in the same order at both compile time
and runtime.

The structure of the subroutine that codes the actual compute kernel in the special super
instruction must be wrapped in a routine that unpacks the arguments given by SIP. From
these arguments, which are some index to the actual argument blocks in the block table,
the address of the data can be found. This can then be used to pass to a routine that does
the actual computation, such as a BLAS routine. An example super instruction that sums
two blocks is shown in Sect. 8.4. The code shows how to unpack the arguments to get to
the data inside the block. The example is written in Fortran, but the code looks similar in
C/C++.

55

PROPOSED

3.5.4 Super instructions argument list *

Index of proposed changes with author 1.1
To support more special super instructions with more complex compute kernels in them,
there is a need to pass more data blocks to the special instruction. The current argument
limit is three. This needs to be extended to be a longer list, which may require a
continuation line.

execute my_spec_si arg1 arg2 arg3 arg4

To work with complex special super instructions in the current version, two extra special
super instructions were written named set ilist, for “internal list”. Code then looks like
this

start building internal argument list

execute set_flags2 a1(i,j)

execute set_flags2 b2(mu,nu)

execute the instruction

execute my_spec_si

The special set ilist stored the location and properties of the argument, usually a block
to be used by my spec si, in a global internal data structure that can be accessed by the
special super instruction. The source code of the special super instruction setflags2 is
shown in Sect. 8.5.
When the language is extended to accept a long list of arguments, the compiler can build
the internal data structure. A convention must be set up to give the programmer of the
special super instruction access to the arguments.
The fact that SIAL does not allow continuation lines and has a limit of 256 characters
per line may pose a problem for building unlimited argument lists.

3.5.5 Super instruction for computing integrals

Currently the compute integrals super instruction is defined in the language.

PROPOSED

Index of proposed changes with author 1.1
It is domain specific and should be a special instruction (see Sect. 6). This will be
changed in the next version.

56

1. compute integrals v(mu,nu,lambda,kappa)
computes one block of integrals in the AO basis.

PROPOSED

3.6 Parallel sections *

Index of proposed changes with author 1.1
At the highest level of abstraction, SIAL currently provides a model of parallelism similar
to what OpenMP calls “fork/join” parallelism. Parallelism is expressed explicitly with
a pardo statement. Every pass through the code block of the pardo becomes a separate
task and the tasks are dynamically mapped to processes by a master task. At the
implementation level, the execution is SPMD. The sequential parts of the computation
are actually replicated at all processes. It is usually the case (but this is not enforced
by the SIAL semantics) that all processes performing these sequential parts will indeed
perform the same computation at the SIAL level. In contrast to OpenMP, there is no
implicit join at the end of a pardo loop. Instead, the SIAL programmer is expected to
insert a sip-barrier instruction where it is needed. The next step is to allow a different
form of parallelism to be expressed in SIAL programs. An obvious model is the parallel
sections construct of OpenMP.

3.6.1 Informal syntax

A parsects-endparsects directive encloses a sequence of sections that could be executed in
parallel. Sections are delimited by sect-endsect statements. Code that is not enclosed in
a parsects directive belongs to an implicit parsects region that contains a single section.

...

parsects

sect

...

endsect

sect

...

endsect

endparsects

...

3.6.2 Grammar

<parallel section region> ::= parsects <section>+ endparsects

<section> ::= sect <codeblock> endsect

<codeblock>::= SIAL code that may contain a sequence of pardo blocks

57

3.6.3 Constraints

• pardo blocks may not contain a parsects region.

• parsects regions may not be nested.

3.6.4 Barriers

There are currently no implicit barriers in SIAL (in contrast with OpenMP). Keeping
with that approach, there would be no implicit barriers related to parsects in SIAL,
either. A possible semantics would be for a barrier appearing in a section to only apply
to the processes executing the code in that section. (A barrier not enclosed in a section
would apply to all processes).
Formally, a SIAL computation is a sequence of parsects regions (which may be implicit if
the parsects region contains only one section). Each parsects region encloses a non-empty
sequence of sections. A section may contain (non-nested) pardo loops. Barriers apply
only within a section.

3.6.5 Allocating processors to sections

First, we give a brief description of the way this is done in OpenMP 3.0. OpenMP
calls the thread available to a parallel region a team. The number of threads in a team
can be set as an environment variable or by runtime routines. Setting the number of
threads inside a section sets the number used for the next level. The number of threads
available to the entire program can also be set. OpenMP allows arbitrary (but possibly
implementation constrained) levels of nested parallelism.
In SIAL the most sensible place to specify the “number of processors in a team” would
be at the top of the sect block. This would control the number of processes available for
the pardo loops inside that section.

<section> ::= sect (<team_size_desc> | e) <block> endsect

In SIAL, it is undesirable to indicate a specific number of processes in the source code.
One can allow the programmer to give a qualitative (fuzzy) indication of appropriate
number of processors as a fraction and let the SIP determine the actual values.
Example: Machine has 200 nodes.

parsects

sect 25\% //results in 50 processes available for this section

pardo ... endpardo

pardo ... endpardo

endsect

sect 75\% //results in 150 processes available for this section

pardo ... endpardo

endsect

endparsects

58

4 Execution environment

4.1 SIP Components

Logically, SIP has the following components:

1. A component coordinating the work to be done by all tasks; this component executes
in the master task during initialization;

2. A component for communication of basic data elements, blocks, between the cooper-
ating tasks, the most visible aspect of this component is the distributed array;

3. A component for storing and retrieving large amounts of data, providing support for
the served arrays;

4. A component for executing basic chunks of work in the form of super instructions; this
component calls the communication and data storage components when necessary.

SIP is a parallel MPI program that consists of multiple tasks. Some tasks are dedicated
to special functions, others are more general.

4.1.1 The IOCOMPANY

Tasks are grouped into companies, which perform a given function cooperatively. For ex-
ample, one company, called the IOCOMPANY, is dedicated to providing support for served
arrays. All data belonging to a served array is divided into blocks and blocks are always
received into or sent from the memory of one of the tasks in the IOCOMPANY. The master
task sets up tables designating which task will hold which block of every array using a simple
algorithm, so that no searching for data blocks is necessary.

The algorithm is similar to that of managing paging space in a modern operating system.
Blocks that are often read or changed regularly will remain in memory for quick access,
whereas blocks that are used infrequently migrate to disk. If a request for a block is made
that is not resident in memory, a delay will occur before the request completes, which is
caused by the need to restore the block from disk.

The operation of the IO servers are show in the diagram below:

served arrays client

| ^

| |

prepare request

| |

| |

v | server process

comm block pool

queue

<---> block struct <--->

empty flag I/O

copied flag queue

59

write lock | ^

data | |

| |

write read (could be asynchronous)

| |

v |

Unix buffer cache

| ^

v |

disks

1. The communication queue are the server front end and are processed at high priority,
they are only blocked when all blocks in the pool are full and no blocks have the
copy-to-disk-completed flag set to true.

2. The I/O queue are the back end and run at low priority, they copy blocks to disk,
which means make system requests to copy blocks to the buffer cache and the kernel
will move them to disk when it needed.

3. The block write lock is set whenever the front end updates a block with a prepare or
the back end restores a previously deleted block from disk, and during that time all
requests for the block are put in wait.

4.1.2 Worker companies

Other companies execute SIAL programs. All tasks in a company execute the same SIAL
program. Very complex algorithms may require the cooperation of multiple companies, each
executing a different SIAL program. The tasks in different companies can communicate with
each other through the IOCOMPANY by reading and writing served arrays, for example.
They can also communicate directly.

Communication of distributed array data is performed as follows: Each task has one or
more threads running that are listening for requests. When a request is made the necessary
locks are acquired to ensure integrity of the data, and then the block is asynchronously sent
or received. While the communication is taking place, more requests for other blocks can
be processed. Multiple requests to read the same block are also processed at the same time,
thus reducing wait time for the client of the distributed array.

4.1.3 Super instruction processing

The activity of each task in all companies except the IOCOMPANY is controlled by a SIAL
program. It is a list of super instructions to be executed. The super instructions can initiate
communication, send or receive, or computation such as the tensor contraction of a two
blocks of data into a third block. The computation can take a significant amount of time,
depending on the block size. It is also possible that the instruction starts the computation
of a block of integrals.

60

As much as possible, the super instructions are executed asynchronously: Communication
operations are started and then control returns so that computation can be performed.
When the data has is really needed, the task checks whether the communication instruction
has completed successfully. The task can also look ahead in the instruction list and start
certain operations early. The purpose of this flexibility is to try and maximize the hiding of
communication delays behind computation work, thus minimizing over all waiting times in
the execution of the parallel program.

PROPOSED

4.1.4 Executing super instructions on GPGPUs

Index of proposed changes with author 1.1
Initial work on executing super instructions inside a PARDO show promise of speed up.
The main challenge is to keep control over the amount of data that must be transferred
from CPU memory to GPU memory, since that is a slow operation.

4.2 Memory management

4.2.1 Data blocks and block stacks

SIAL is a language used to perform mathematical operations in parallel on arrays. In order
to accomplish this, each index of an array is subdivided into segments, which in turn imposes
a breakdown of the data into blocks. These blocks vary in size due to the types of indices
comprising the array and the different segment sizes of those indices.

All memory used by the SIP is pre-allocated onto one of several different block stacks.
Each block stack contains blocks of the same size. When a SIAL program is configured for
execution, a pre-pass phase is executed, in which an estimate is made of the number of blocks
needed on each stack as any instruction in the program is executed. Any remaining memory
is allocated equally among the various stacks. As blocks are needed by the SIP instructions,
they are allocated from the stack whose block size best fits the required block size. If all
blocks on the desired stack are in use, the SIP tries to allocate a block from the stack with
the next largest block size, and so forth.

Large data structures should be declared as DISTRIBUTED arrays, so that the blocks
are spread over the memory of all tasks. All required communication to write and read
blocks of distributed arrays is implicitly executed by the SIP. However, if a data structure
does not have to be known to all tasks, then it is better to store just a part of the entire
structure in an array declared as LOCAL. This way no communication is implied.

There is only one actual malloc done in the program ever. Not one per SIAL program,
one malloc, period. This is done right up front, before a process ever knows that it is a worker
or server. The amount of memory is given by the MAXMEM parameter, and the memory
is never freed. It is simply retained until the end of execution of the entire program. It is
reconfigured for reuse during the startup of each SIAL program, through calls to a memory

61

management subsystem that tracks the amount of the malloc memory. It was done this way
when we put the joda stuff inside ACESIII. This way of working allows a processor to easily
switch its usage of memory form joda’s usage (before the SCF SIAL program runs), to the
usage needed by a worker process (in SCF and possibly other SIAL codes), to a server’s usage
(if the process is allocated to the IOCOMPANY), then to the usage required at the end of
a SIAL program (to set up buffers required to handle timing reports, gradient processing,
etc.). It makes it all very dynamic, without the overhead of malloc/free calls.

To allow workers and IO servers to have a different amount of memory to work with, one
would need to do the following:

1. Determine the MAXMEM parameter, as well as a new parameter, SERVER MAXMEM,
or whatever you think it should be called.

2. Change the malloc call to malloc the max(MAXMEM, SERVER MAXMEM).

3. Add a new variable for use in the memory package, maxmem available.

4. In the startup phase of each SIAL program, once it is determined whether a pro-
cess is a worker or server, maxmem available is set appropriately, to MAXMEM or
SERVER MAXMEM.

5. In the memory package, right now, there is an error if the total memory requested
exceeds MAXMEM. This would be changed so that the error occurs if the memory
requested exceeds MAXMEM AVAILABLE.

The effect would be to allow the servers to use different amount of memory than the workers,
but in reality, all you would be doing is forcing the workers to limit their use of memory to
a lesser amount.

It is possible for the user to configure the amount of RAM for each tasks in such a way
that a large amount of RAM is allocated to IO servers. This will effectively avoid all reads
from disk for data because all PREPAREd blocks will be resident in the IO server cache for
every REQUEST.

4.2.2 Memory estimate from a dry run

When a SIAL program is going through its startup phase, it initializes a number of tables
and reserves memory for any static arrays needed during the calculations. After this, the
program must determine the distribution of the remaining memory among the various block
stacks, as well as whether it is actually possible to run the program with the remaining
amount of memory on the number of processors provided. This is the role of the dry run.

The program calls a subroutine, stack distribution, which in turn calls optable loop sim.
Subroutine optable loop sim analyzes the SIAL instruction table and returns an array con-
taining the number of blocks necessary for each type of block stack in order for the program
to run. This array is used by stack distribution to (1) determine if there is enough memory
to actually hold this distribution of blocks, and (2) if so, distribute whatever excess memory
may be present among the block stacks to come up with the final block distribution. If
stack distribution is able to come up with a valid distribution of blocks, the dryrun passes.

62

If the dryrun fails, the program goes into a loop to determine the minimum number of
processors necessary to fit the job into this memory. During this loop, the number of trial
processors is increased, the block map table is adjusted to redistribute the distributed and
served blocks for each processor, and stack distribution is called again with the trial setup,
until a valid stack distribution is reached. This is the minimum number of processors. The
user is notified, and the job aborts.

The key routine is optable loop sim, which goes through the instruction line by line,
during the number of blocks needed for each stack at each SIAL instruction. During this
analysis, no looping, iteration, or branching is done. The routine accounts for the number
of blocks added by CREATEs, and ALLOCATEs, and subtracts blocks that are removed
by DELETEs and DEALLOCATEs. Also, the routine correctly adjusts for temp blocks
required during execution of loops. Optable loop sim gives a conservative, less-than-optimal
estimate because it has no way of knowing the actual blocksize of the blocks used in a loop.
Instead it uses the maximum segment size for each index of a block to determine its size,
and therefore the appropriate block stack on which to place a block. If the block distribution
it gives does fit into memory, it is guaranteed that the SIAL program will not run out of
memory, if all else goes well.

Source code for stack distribution is in the ACESIII/worker directory, optable loop sim
is in ACESIII/sip.

4.2.3 Block stack management

All data is set up in arrays declared in the SIAL code. Arrays are declared either static,
local, distributed, served, or temp. Each array is declared with the indices used in references
to the array. The actual data of the array is broken down into blocks of one segment of each
of the array’s declared indices. The size of each segment of an index depends on the index
type.

Static arrays are replicated on each processor in their entirety, and the memory to contain
a static array is in the heap, but is reserved during the initialization of the SIAL program.
Whatever heap memory remains after the static arrays are initialized is divided into memory
stacks of different sizes, see Section 4.2.2 for details, and managed as blocks by the blkmgr.
Blkmgr is simply a set of interface routines used to manage the processor’s stacks of data
blocks. Code for blkmgr is located in the file ACESIII/sip/blkmgr.F

The blocks of the arrays declared by SIAL are not all present at the same time, and they
are only present when brought in and out of scope by SIAL instructions. For instance, a
distributed array must be brought into scope by a CREATE instruction, and is removed by
a DELETE instruction. Its blocks are scattered among the worker processes while it remains
in scope, and it is accessible by GET and PUT instructions. When the array is DELETEd,
its data blocks become available for use in other arrays.

Management of the block is performed by a set of flags, which are maintained for each
block. When an instruction brings a block into scope, it must find a free block and reserve
the block by setting the block busy flag. The routine performing this task is allocate block.
When a block is no longer needed, it must be freed, which is performed by free block, which
clears the flags associated with the block, releasing it for further use.

Temp blocks come into scope during the execution of SIAL instructions, such as the

63

result of a contraction, or as a block needed to hold remote data brought over in a GET or
REQUEST instruction. When an instruction brings a temp block into scope, a flag indicating
this is set in the instruction table. At the end of each DO or PARDO loop, some special
code is executed to examine each instruction in the loop, and free the blocks if possible. This
code is in ACESIII/sip/block end of loop.f. If the block is still engaged in communication,
this is not possible, so the block is put into a scrub queue, which is checked as blocks are
needed later in the program. If the block is the result of a GET or REQUEST, it is not
released, but flagged as a persistent block, which will not be reallocated by the algorithm in
allocate block unless absolutely necessary. Otherwise the block is freed. If a new GET or
REQUEST is done, and the data is found to be in a persistent block already in memory, no
MPI communication is necessary, the instruction simply sets the flags necessary to bring the
block back into scope.

When allocate block cannot find any free blocks of the proper size, it first searches the
scrub queue, doing MPI TEST calls on each block in the queue until a block is found that
has completed its communication. If the block has not been flagged as persistent, it is now
available for reuse. If no such block can be found, the persistent block queue (a FIFO) is
searched, and the first block of sufficient size is allocated. In this way, the blocks keep coming
available for reuse, although communication overhead is possible if memory is very tight and
the program is forced to keep doing extra MPI requests due to continuously eliminating the
persistent blocks.

4.2.4 Domain specific memory management

The SIP does all input/output. For compatibility with the rest of ACES II, the JOBARC
files is read in the beginning and updated at the end of any SIAL execution; similarly the
LISTS file(s) are read and updated to allow serial modules to intermix with parallel modules
controlled by SIAL. In the SIAL language, there are no explicit read or write operations
defined. The SERVED arrays are to be used for very large arrays and they can be assumed
to be written in an efficient way in parallel by the SIP.

4.3 Execution management

4.3.1 Role assignment to tasks

When tasks are designated to become workers or IO servers, the master does pays attention
to association of the tasks with the nodes they are running on. The demands placed on
the hardware by a worker task is different than that by an IO server, as the input/output
requests may generate different hardware activity depending on the way the storage system
is connected to the nodes, or different patterns of communication in the case of storage
systems that provide a parallel file system using the same fast interconnect that is used for
MPI communication. Thus some nodes with 2 CPUs and 12 cores may end of with a number
of workers and IO servers such that the number of IO servers exceeds some basic capability
of the node.

To address this a more elaborate distribution than simple assignment of worker and IO
server roles to tasks is orchestrated by the master to ensure that IO servers and workers are

64

mixed more evenly over nodes, e.g. so that no more than one or two tasks per node become
IO servers.

The master tries to map one process per node to the IOCOMPANY, and it uses the
MPI hostname to discriminate between the various nodes by using the value returned by
MPI GET PROCESSOR NAME, which is supposed to be different for processors on dif-
ferent nodes. On some systems it returns the same name for all processors, and then this
algorithm does not work properly.

The code is in ACESIII/framelib/build pst.F, call to mpi get processor name in line 80
puts the name in the variable “hname”, which is declared as

CHARACTER*(MPI_MAX_PROCESSOR_NAME).

4.3.2 PARDO processing

The PARDO construct should be used to execute a chunk of code on the local parts of a
distributed array. All indices to be looped over in this way must be listed on the PARDO
statement, because PARDO constructs cannot be nested. The master assigns which ranges
of the block indices will be executed by each worker.

The ALSO PARDO allows the programmer to construct multiple blocks of code that
each by themselves allow distributed processing and also are independent so that the code
blocks can be executed on different sets of processors. If the number of processors is too
small, the ALSO PARDO code blocks will be executed in serial, one after the other. But
the construct allows the SIP to schedule work more efficiently if resources are available.

The regular DO construct should be used to execute a chunk of code for the complete
range of the index specified in the DO statement. The DO construct can be arbitrarily
nested.

A few special instructions have been defined. They are a simple mechanism in the SIAL
language to process a small number of types of operations for which it is not worthwhile to
develop a fully defined syntax.

All indices listed on the PARDO statement are evaluated as to their range, possibly
restricted by a logical expression is the where-clause is present, and the total list of possible
combinations is then distributed by the master task to all worker task in a static fashion.

When dynamic load balancing is in use, the work is distributed in a way that is identical
to “guided” in the OpenMP standard. The workers get a partial assignment and when their
assignment is complete they contact the master for more work.

The following lists the operation of load-balancing pardo.

1. Data used in the PARDO load-balancing algorithm is stored in the instruction table
itself. This allows the master to track ongoing execution of different PARDOs, some
of which may be in entirely different states of execution. Before modifying any of the
data in the PARDO instruction entry in the instruction table, a lock must be acquired,
and released after the data is modified.

2. When a PARDO is executed, it must be initialized. A flag in the instruction table
indicates whether or not the loop has been initialized. If the loop must be initialized,
the following occurs:

65

3. The current instruction context (start op, end op) are pushed onto the loop context
stack, along with the current state of the WHERE conditions.

4. New values for start op and end op are calculated. These are the index of the current
PARDO instruction and its corresponding ENDPARDO instruction. These values are
needed to enable the SIAL program to execute nested loops and other instructions
which interrupt sequential instruction execution.

5. The PARDO timer data is unpacked from an entry in the instruction table, and the
PARDO timer is started. Also, any new WHERE conditions are added to the existing
set of WHEREs already in effect.

6. Subroutine lb set loop incr mapping is called. This routine examines the set of PARDO
indices, determines max batch, the number of batches of work that the PARDO will
perform. The variable last batch processed is set to the max batch +1, which forces
later iterations of the PARDO to reset on the first batch to be processed.

7. Initialization is concluded, and the instruction initialization flag is set to 1.

8. On a normal pass of the PARDO (I. e., one in which no initialization is performed),
the following occurs:

9. The variables next batch and last batch are obtained from data in the instruction table.
These define the range of batches undergoing processing on the current processor.

10. If next batch ¿ last batch, or next batch = 0, then the current processor must acquire a
new batch. This is done by communication with the master process. On a non-master
processor, the following takes place:

11. The processor acquires the PARDO lock.

12. The routine PARDO loadb get next batch is executed. This routine sends a batch
request to the master, then blocks until the master responds with a message containing
the new data for next batch, last batch. This data is stored in the current processor’s
copy of the instruction table. If there is no more work, the master returns next batch
= -1.

13. The PARDO lock is released.

14. The current processor now has current data for next batch, last batch.
Routine lb get next loop set is called to convert the next batch value into an array of
segment values, each segment corresponding to one of the PARDO indices.

15. The values of each PARDO index in the index table are set to the corresponding
segment value from step 3 above. The current instruction pointer (iop) is incremented
by 1, which forces instruction processing to begin at the next instruction following the
PARDO. The PARDO routine returns to the instruction table processing loop.

66

16. The master determines the set of batches as follows:
Recall that the total number of batches is max batch. 90% of max batch is distributed
in equal size chunks of 0.9*max batch/np, where np is the number of worker processes.
When these batches have been distributed, the size of each batch is tapered linearly
to a minimum of 1. Once the complete amount of work has been distributed, when
any processor requests a new batch, the master returns a -1. This is a signal that the
worker process may do its end-of-loop processing and move to the instruction following
the PARDO loop.

4.3.3 End of loop processing

When a processor determines that it will receive no more work from the master for a PARDO
loop, it skips to the ENDPARDO instruction at the end of the loop. Then it examines the
instruction table entries between the beginning and end of the PARDO/ENDPARDO to
determine whether an instruction has brought into existence any blocks as a result of the
instruction. If it has, and the block is not needed for communication with other processors,
the block is freed (I. e. becomes available for reuse). Otherwise, the block is added to a
scrub queue. At some later point in the program, when a block is needed and the program is
unable to find one that is free, the scrub stack will be searched and the block will be tested
to see if the communication has finished. If so, it is scrubbed, and becomes available at that
point. Blocks that have been brought into existence as the result of a GET or REQUEST
instruction will be flagged as persistent blocks. This means that, even though their use is
over and they are not engaged in communication, the program should leave them alone if
possible. The block allocation scheme only frees a persistent block if all other blocks are in
use.

4.3.4 IO Server activity

The IOCOMPANY parameter sets up the tasks allocated for use as I/O servers. When
ACESIII determines the allocation of MPI processes to companies, it attempts to set up one
I/O server on each compute node to avoid I/O bottlenecks. The exception to this is the
Blue Gene. On the Blue Gene, an equal number of servers are allocated to each set of 64
compute nodes. This is due to the Blue Gene architecture, which allocates one I/O node to
every 64 compute nodes.

Once the servers are allocated, the master sends each server a portion of the block map
table. The portion received by a server lists only the blocks of each array that are that
server’s responsibility to manage. This data is used to build the server’s own tables.

The server’s main table is called the server table. This table contains information about
each of the server’s managed blocks. A second table is the server msg table, containing the
set of messages currently being processed by the server. The rest of the server’s memory is
divided into blocks, each block equal to the largest block the server will be asked to process.

After the server’s tables and memory is initialized, the server enters a processing loop.
From this point on, the server’s action is as follows:

1. Probe for a message from a worker.

67

2. When a message is detected, and a free message buffer is available, receive the message
into the message buffer (also referred to as a message node).

3. For each active message node, the server enters the message handler routine for that
node’s particular message type.

The server works on different types of messages: request, prepare, barrier, blocks to list,
etc. Each type of message supported by the server has a subroutine associated with it, a
message handler. Each message handler is set up to be event-driven. When a message first
enters a message node, it attains the begin state. When a handler has determined that a mes-
sage’s processing is complete, it sets the message state in the node to null state. In between,
the message can take on different states that are valid for the processing of that particular
message. For example, a request message may move from begin state to wait for send state
to wait for block state to request cleanup state to null state. Other messages go through
different states, handled by their own message handler routine.

When step 3 above has completed, the server checks for any nodes that are in null state.
If it finds one, it moves it from the active set to the free set, then loops back to step 1. The
server terminates its infinite processing loop when it receives a quit message, indicating the
worker’s master process is initiating a server takedown at the end of a SIAL program. At
this time, if server statistics have been collected for a timing report, it collects the data in
the IOCOMPANY’s master task and sends it to the worker’s master task before exiting.

All source code for the server is in the ACESIII/manager directory.

PROPOSED

4.3.5 Fault tolerance *

Index of proposed changes with author 1.1
During the of multi-task-parallelism design, it is relevant and maybe essential to keep
fault tolerance in mind. We must provide ways to decide that a task group will never
deliver on its assigned work because processors in the task group have failed.
For the design of a general fault tolerant execution model, we can look to modern fault-
tolerant enterprise computing strategies: replication for data and virtual machines for
execution. Check-pointing can be compared to the distant past where regular backup to
tape was used to protect computer operations. When a major fault occurred the system
was rebuilt from tape.

1. Data replication The design of SIP can be modified without changing SIAL to
support dynamic replication of data. We can use RAID 1 replication of blocks.
With each block having two owners that are both updated at the same time and
from which one is selected for reading. A more complicated scheme with RAID
5 style parity is possible. Then a number of copies of each block is kept and a
block with checksum data. Implementation of data replication requires taking into
account the information about processors being part of a single node, so that SIP

68

can make sure copies are kept on different nodes. As it is likely that faults with
cause entire nodes to be taken out of the working collective.

2. Fault tolerant execution With data taken care of in an online fashion, execution
can be dealt with very easily. If a processor does not respond it is marked as offline
and the work it was doing is assigned to another processor. This will require a very
simple communication primitive that provides access to heart-beat information.

Anticipating the fault tolerance in the design of SIP will make us ready when MPI gets
there and allow us to explore other communication mechanisms that already have support
for detecting failed members.
Notes:

1. Blue Waters will provide coarse grained LoadLeveler check-pointing.

2. A recent workshop addressed fault tolerance
http://www.teragridforum.org/mediawiki/index.php?title=
2009 Fault Tolerance Workshop.

3. The FT-MPI API is defined by the HARNESS (Heterogeneous Adaptive Reconfig-
urable Networked SyStem) runtime system http://icl.cs.utk.edu/harness/

4. The MPI 3.0 standard activity has a Fault Tolerance Working Group
http://meetings.mpi-forum.org/mpi3.0 ft.php

PROPOSED

4.3.6 ScaLAPACK interoperability *

Index of proposed changes with author 1.1
To allow SIAL and SIP to make use of existing parallel libraries such as ScaLAPACK,
some work needs to be done. The data used by ScaLAPACK is a regular cyclic-block
distribution for matrices. Each worker who will collaborate on a ScaLAPACK call must
allocate some blocks on its stack that are big enough to hold these cyclic matrix blocks. A
routine must be provided to transfer blocks of SIAL type into these blocks of ScaLAPACK
type.

5 Software development environment

To aid development and debugging a SIAL environment has been created to support devel-
opment of SIAL programs and to aid in debugging and tuning them. This environment is a

69

plugin for Eclipse, the standard opensource and extensible environment for development and
debugging; see the URL http://eclispse.org for full documentation and source of Eclipse.

5.1 Eclispe IDE

An Eclipse Plugin to enable IDE assisted development of SIAL programs is in progress. The
update site for it is http://www.cise.ufl.edu/ njindal/sial/updates. Check out this site for
basic eclipse tutorials. Once installed,

• Choose File-¿New-¿Other.

• In the dialogue choose General-¿Project.

• Give the project a name.

• Right-click on the project in the ”Package Explorer” view, choose New→Other, General→File.

• Give it a name and an extension of .sial. (eg ccsd.sial).

• A new empty file will be created and Eclipse will correctly recognize it as a SIAL file.

Do not worry about the red mark at the beginning. As you type a correct program, this
should go away.

5.2 SIAL IDE Features

1. Syntax highlighting

2. Outline view for pardos, calls, procedure declarations, etc.

3. Source Folding

4. Analyses

(a) Find (and mark) suboptimal contractions

(b) Find (and mark) unused variables

(c) Find (and mark) unused procedures

5. Refactorings - To do refactoring, select some code, right-click-¿Refactorings...

(a) Improve suboptimal contractions

(b) Comment or remove unused variables

(c) Comment or remove unused procedures

5.3 Building or compiling SIAL programs

This feature is not yet supported.
You would still need to edit the file in the IDE, transfer it to a machine which has

ACESIII ”installed” and compile it there.

70

5.4 Running SIAL programs

This feature is not yet supported.

5.5 Performance analysis tools

execute trace on—off
turn on or off tracing features listed by their keyword.

The SIP keeps track of a number of timers that record the execution of super instructions
and the traffic of MPI messages. At the end of the execution, the data is collected and
averaged. The output file then lists the average, standard deviation, minimum and maximum
for each timed instruction together with the source line number in the SIAL program.

If a user wants a report on the timing of SIAL instructions, he can get it by setting
TIMERS=YES in the ACESIII ZMAT file, in the *SIP section. This provides timing data
on each SIAL program that is run. If timing data for only one SIAL program is required,
the user sets TIMERS=¡sio filename¿ instead.

The program collects the data automatically through a set of interface routines. The
source code for the routines is in ACESIII/framelib/timer.f. The program sets up timers for
each significant SIAL instruction (branch instructions and re-indexing type instructions are
not timed). Also, for each PARDO loop, timers for the entire loop and a timer for the block
wait time in the loop are set. Block wait time is the time the program is forced to wait for
a block that is being sent from a remote processor, whether it be a worker or server.

In order to set up a timer, the programmer calls the subroutine register timer. This
routine accepts a user-specified character string as an identifier for the timer, and returns
an integer key that is later used to reference the timer. The keys for each timer are stored
in the instruction table entry of the instruction for which the timer applies.

As a SIAL program executes a SIAL instruction, it pulls the instruction’s timer key (if
one exists) out of the instruction table. The timing of the instruction begins by calling
subroutine timer start with this key. Then the instruction is executed. The timer is stopped
by calling update timer with the same key. Update timer takes the difference in wall-clock
times of the timer start call and the update timer call and sums it into the internal timer
data structure.

After the SIAL program is finished, each processor’s timer data is sent to the master
process and summed together with the data corresponding to the same timer identifier
string. The average, minimum, maximum, and standard deviation of the values across the
processors are computed. Then the timer report is printed. Source code for this is in
ACESIII/main/timer data.F.

In addition to the timers, interface routines for program counters have been provided.
Counters are registered similarly to timers, by calling register counter to get a key for a
counter. They are updated by the routine increment counter. This code is also in ACE-
SIII/framelib/timer.f. The counter report comes out after the timer report. Four counters
have been created for each line of SIAL code for which there is an instruction timer. These
counters are GET, PUT, PUTINC, PARDOMSG, REQUEST, PREPARE, and PREPSUM.
The report of counter data comes out automatically whenever a timer report is created.

71

6 Listing of special super instructions

Several special instructions have already been developed and tested. They can be used in
any SIAL program. Consider an example use.

energy denominator v(a,i,b,j)
In coupled-cluster calculations it is necessary to divide a quantity, say Told(a, i, b, j) by
[e(i)+e(j)-e(a)-e(b)] where e(k) are the orbital eigenvalues. The instruction
energy denominator array(a,i,b,j)
divides each element of array(a,i,b,j) within the block by [e(i)+e(j)-e(a)-e(b)] and locally
replaces that block array(a,i,b,j) by its ’scaled’ value.
Example:
The distributed array Told(a, i, b, j) is divided by [e(i)+e(j)-e(a)-e(b)] and the result put into
the distributed array T2new(a, i, b, j)

PARDO a, b, i, j

GET Told(a,i,b,j)

execute energy_denominator Told(a,i,b,j)

PUT T2new(a,i,b,j) = Told(a,i,b,j)

ENDPARDO a, b, i, j

6.1 Generic special super instructions

The special super instructions listed are of general use.

1. copy ff
syntax: execute copy ff array1 array2
function: Copies the array2 into the array1 without regard to index type
restrictions: array1 and array2 must be two-dimensional static arrays.

2. set index
syntax: execute set index array1
function: Sets the indices of a 4-d array in common block values. These indices are
stored in the SINDEX common block.
restrictions: array1 must be a 4-dimension array with simple indices.

3. eigen nonsymm calc
syntax: execute eigen nonsymm calc array1 array2
function: Calculates the eigenvalues and eigenvectors of a 2-d square matrix. The
matrix does NOT have to be symmetric. The matrix is also diagonalized on output.
Array1 is the diagonalized matrix and array2 is the matrix whose columns are the
eigenvectors of Array1.
restrictions: array1 and array2 must be two-dimensional static arrays.

4. check dconf
syntax: check dconf array1 scalar1
function: The largest(absolute value) element of array1 is found and output as scalar1

72

restrictions: array1 must be two-dimensional and scalar1 must be declared as a scalar
in the sial program.

5. return diagonal4
syntax: execute return diagonal4 array1 array2
function: The diagonal elements of the array array1 are removed and the resulting
diagonal array is output as array2. array1 is not modified by the instruction.
restrictions: Both array1 and array2 must be four-dimensional.

6. return diagonal
syntax: execute return diagonal array1 array2
function: The diagonal elements of the array array1 are removed and the resulting
diagonal array is output as array2. array1 is not modified by the instruction.
restrictions: Both array1 and array2 must be declared as static arrays in the sial
program, and be two-dimensional.

7. return sval
syntax: execute return sval array1(p,q) scalar1
function: The scalar scalar1 is set equal to the value of the array array1. The overall
purpose is to pull out the (p,q) element of the array1 and set scalar1 equal to its value.
restrictions: array1 must be two dimensional and scalar1 must be declared scalar in
the sial program.

8. place sval
syntax: execute place sval array1(p,q) scalar1
function: The (p,q) element of array1 is set equal to scalar1.
restrictions: array1 must be two-dimensional. scalar1 must be defined as scalar in the
sial program.

9. square root
syntax: execute square root scalar1 scalar2
function: scalar1 is raised to the power scalar2. scalar1 = scalar1**scalar2
The name is misleading since it does the more general power instead of only the square
root. restrictions: scalar1 and scalar2 must be declared as scalars in the sial program.
To be a renamed power in the new version.

10. apply den2
syntax: execute apply den2 source(p,q) target(i,j)
function: each element of the array source(p,q) is divided by the corresponding element
of the array target(i,j). The array source contains the output.
restrictions: the arrays source and target must be two dimensional arrays.

11. apply den4
syntax: execute apply den4 source target
function: each element of the array source(p,q,r,s) is divided by the corresponding
element of the array target(i,j,k,l). The array source contains the output.
restrictions: the arrays source and target must be four dimensional arrays.

73

12. remove diagonal
syntax: execute remove diagonal array1 array2
function: The diagonal elements of the array1 are removed and the resulting array is
array2.
restrictions: array1 and array2 must be two-dimensional static arrays.

13. set flags
syntax: execute set flags array1(i1,i2,i3)
function: Sets the indices i1,i2,i3 of a 3-d array in common block values for further use
by other special super instructions. The compiler passes not only the array information
but also the indices of the block indicated by the indices to the special super instruction.
restrictions: array1 must be three-dimensional with simple indices.

14. set flags2
syntax: execute set flags2 array1(i1,i2)
function: Sets the indices i1,i2 of a 2-d array in common block values. The compiler
passes not only the array information but also the indices of the block indicated by the
indices to the special super instruction.
restrictions: array1 must be two-dimensional with simple indices.

15. print scalar
syntax: execute print scalar scalar1
function: prints the value of the scalar1 to standard output.
restrictions: scalar1 must be declared as a scalar in the SIAL program.

16. dump block
syntax: execute dump block array1(p,q,r,s)
function: Writes out information about the block of array1(p,q,r,s). The first,last,maximum,and
minimum values of the block are written out and the sum of squares of all elements in
the block.
restrictions: array1 must be of dimension 6 or less.

17. array copy
syntax: execute array copy array1 array2
function: To copy the array1 into array2 COMPLETELY.
restrictions: array1 and array2 must have the same dimensionality and index types.

18. blocks to list/write blocks to list
syntax: execute blocks to list array(p,q,r,s)
syntax: execute write blocks to list
Write the blocks of array to a list file or write the blocks of all arrays. This makes the
data available in succeeding SIAL programs. It writes a simple FORTRAN sequential
unformatted binary file containing all data blocks, called BLOCKDATA, as well as
an index file called BLOCK INDEX, used to determine the data format for reading
the data blocks in the second SIAL program. There must be a sip barrier after each
blocks to list execution.

74

Note: The current implementation of this does not write an actual ACES II list file.
Note: The current implementation uses serial IO or MPI-IO, but needs improvment in
performance.
Note: The current implementation does not allow proper flexibility to selecting what
data to save for subsequent processing. Maybe a standard file-format like HDF5 could
help in making this feature more useful, more portable, and more performant? function:
To write all blocks in an array to a file. To use this instruction properly you must do
the following.

• execute sip/server barrier

• execute blocks to list array k for all arrays being written out

• execute write blocks to list

• execute sip/server barrier

restrictions: none

19. list to blocks/read list to blocks
syntax: execute list to blocks array(p,q,r,s)
syntax: execute read list to blocks
Read the blocks of array from a list file or of all arrays. The data must have been
written by a blocks to list execution in a preceding SIAL program. It reads the
BLOCKDATA and BLOCK INDEX files described in the section on blocks to list.
The order of each list to blocks execution must be the same as that of the blocks to list
statements from the first job. Also, there should be a sip barrier executed after each
list to blocks.
Notes: See under blocks to list.
function: To read all files(lists) and put them into arrays(blocked) . To use this
instruction properly you must do the following.

• execute sip/server barrier

• execute list to blocks array k for all arrays being read in.

• execute execute read list to blocks

• execute sip/server barrier

restrictions: The data being read in must match up perfectly with the data in the
blocks to list/write blocks to list from the previous sial program.

20. sip barrier
syntax: execute sip barrier
function: causes the worker processors to synchronize. Must be used after distributed
arrays are create, before distributed arrays are deleted, and in general whenever dis-
tributed arrays are used a barrier must be placed before the distributed array can be
used.
restrictions: none
To become an operation statement in the new version, see Sect. 3.5.

75

21. server barrier
syntax: execute server barrier
function: causes the server processors to synchronize. Used in a manner similar to
the way the sip barrier is used when using distributed arrays except is relevant when
served arrays are being used.
restrictions: none
To become an operation statement in the new version, see Sect. 3.5.

6.2 ACES III domain specific super instructions

The special super instructions listed are domain specific for ACES III and may or may not
be useful for others.

1. return h1
syntax: execute return h1 h1
function: Computes the one-electron integrals of type kinetic and nuclear attraction,
sums them and returns them as h1.
restrictions: h1 must be a two-dimensional array.

2. fmult
syntax: execute fmult array1
function: Each element of the two-dimensional array1(i,j) is scaled by the fock matrix
diagonal element (i,i).
larray1(i,j) = array1(i,j)*fock(i,i).
restrictions: array1 must be a two-dimensional array.

3. read grad
syntax: execute read grad array1
function: The array1(i,j) is read in and summed into the gradient which is in a common
block.
restrictions: array must be declared with simple indices. i and j should range from
1-natoms and 1-3, but simple indices have segment sizes of 1.

4. energy denominator
syntax: execute energy denominator array1
function: divides each element of array1(a,i,b,j,...) by the denominator fock(i,i)+fock(j,j)+..-
fock(a,a)-fock(b,b)-....
restrictions: array1 must be two, four, or six dimensional.
The indices of array1 should have the correct spin type. i.e. (a,i) → (alpha,alpha),
(b,j)→ (beta,beta), etc.. Although the instruction would execute properly even if this
were not the case but care should be taken using this instruction in the manner.

5. energy adenominator
syntax: execute energy adenominator array1
function: divides each element of array1(a,i) by the denominator fock alpha(i,i) -
fock alpha(a,a).
restrictions: array1 must be two dimensional.

76

6. energy bdenominator
syntax: execute energy bdenominator array1
function: divides each element of array1(a,i) by the denominator fock beta(i,i) - fock beta(a,a).
restrictions: array1 must be two dimensional.

7. energy abdenominator
syntax: execute energy abdenominator array1
function: divides each element of array1(a,i) by the denominator fock alpha(i,i) +
fock beta(i,i) - fock alpha(a,a) - fock beta(a,a).
restrictions: array1 must be two dimensional.

8. read hess
syntax: execute read hess array1
function: The elements of the four dimensional array array1 are summed into the
Hessian which is in a common block. Note that the summation is only performed on
processor 0.
restrictions: array1 must be a four dimensional array with simple index types. It must
be dimensioned as (natoms,3,natoms,3).

9. fock denominator
syntax: execute fock denominator array1
function: The elements of the array1(a,i,b,j) are divided by fock(i,i) + fock(j,j) -
fock(a,a) - fock(b,b). Note that if the denominator is zero that element of the ar-
ray is set to zero.
restrictions: array1 must be 2 or 4 dimensional.

10. der2 comp
syntax: execute der2 comp array1(m,n,r,s)
function: The derivative integrals for the block (m,n,r,s) are computed and returned
in arrays1. Note that set flags2 must have been used to define which degree of freedom
to take the derivative with respect to. i.e. atom and component.
restrictions: array1 must be a 4-dimensional array with AO indices and the coordinate
with respect to which the derivative is taken must have been set, probably by set flags2.

11. fock der
syntax: execute fock der array1(mu,nu)
function: Computes the derivative of the fock matrix from only one-particle contribu-
tions T+NAI and returns it as array1. The degree of freedom to take the derivative
with respect to, i.e. atom and component, must have been previously set, probably by
set flags2.
restrictions: Array1 must be two-dimensional array with AO indices. The perturbation
must have been set before fock der is called.

12. overlap der
syntax: execute fock der array1(mu,nu)
function: Computes the derivative of the overlap matrix. The degree of freedom to take

77

the derivative with respect to, i.e. atom and component, must have been previously
set, probably by set flags2.
restrictions: Array1 must be a two-dimensional array with AO indices. The perturba-
tion must have been set before fock der is called.

13. scontxy
syntax: execute scontxy array1
function: The second derivative 1-electron overlap integrals are computed and con-
tracted with the array1. Note that array1 is perturbation independent and that all
perturbations are considered inside the instruction. The Hessian is updated internally
as well.
restrictions: array1 must be a two-dimensional array with AO indices.

14. hcontxy
syntax: execute hcontxy array1
function: The second derivative 1-electron kinetic and nuclear attraction integrals(i.e.
fock matrix contributions) are computed and contracted with the array1. Note that
array1 is perturbation independent and that all perturbations are considered inside the
instruction. The Hessian is updated internally as well.
restrictions: array1 must be a two-dimensional array with AO indices.

15. compute integrals
syntax: execute compute integrals v(mu,nu,lambda,kappa)
computes one block of integrals in the AO basis.
restrictions: array1 must be a 4-dimensional array with AO indices.
This super instruction is not special in the current version, but it will be in the new
version. See Sect. 3.5.3.

16. compute sderivative integrals
syntax: execute compute sderivative integrals array1(m,n,r,s)
function: The second derivative of the two-electron integrals is computed and con-
tracted with array1. The perturbations (atom,component,jatom,jcomponent) defining
the derivative are looped over internally and the hessian is updated internally.
restrictions: array1 must be a 4-dimensional array with AO indices.

17. removevv dd
syntax: execute removevv dd array1 array2
function: removes all doubly occupied indices from the array1 with array2 being the
result of the array with the all doubly occupied indices removed. Applicable if array1
= array1(b,b1), b = virtual beta index.
restrictions: array1 and array2 must be two-dimensional arrays and they must have
beta virtual indices. nalpha occ ¿ nbeta occ is required. Only used for ROHF codes.

18. removeoo dd
syntax: execute removeoo dd array1 array2
function: removes all doubly occupied indices from the array1 with array2 being the
result of the array with the all doubly occupied indices removed. Applicable if array1

78

= array1(i,i1), i = occupied alpha index.
restrictions: array1 and array2 must be two-dimensional arrays and they must have
alpha occupied indices. nalpha occ ¿ nbeta occ is required. Only used for ROHF
codes.

19. remove xs
syntax: execute remove xs array1 array2
function: Removes the singly occupied components of the array1 which must be of
type array1(a,i) which → array1(a,i nosingles)
restrictions: array1 and array2 must be two-dimensional arrays and they must have
(a,i) indices. a/i → alpha virtual/alpha occupied. Only used for ROHF codes

20. remove xd
syntax: execute remove xd array1 array2
function: Removes the doubly occupied components of the array1 which must be of
type array1(a,i) which → array1(a,i nodoubles)
restrictions: array1 and array2 must be two-dimensional arrays and they must have
(a,i) indices. a/i → alpha virtual/alpha occupied. Only used for ROHF codes

21. remove ds
syntax: execute remove ds array1 array2
function: Truncates the array1(i,i) to array1(i nodoubles,i nosingles)
restrictions: array1 and array2 must be two-dimensional arrays and they must have
(i,i) indices. i → alpha occupied. Only used for ROHF codes

22. remove ss
syntax: execute remove ss array1 array2
function: Truncates the array1(b,b) to array1(b nosingles,i nosingles)
restrictions: array1 and array2 must be two-dimensional arrays and they must have
(b,b) indices. b → beta virtual OR (i,i), i → alpha occupied. Only used for ROHF
codes

23. comp ovl3c
syntax: execute comp ovl3c array1
function: Computes the three center overlap integrals and returns them in array1.
restrictions: array must be a three-dimensional array with AO indices.

24. udenominator
syntax: execute udenominator array1
function: The array1 is divided by an energy denominator just as in energy denominator.
udenominator does not require that the denominator not go to zero as small elements
or zero denominators are eliminated.
restrictions: array1 can only be a 2 or a 4 dimensional array.

25. copy fock
syntax: execute copy fock array1 fock
function: Copies array1 into the fock array and copies the diagonal elements into the

79

corresponding eigenvalue array which is predetermined.
restrictions: The fock array is predetermined so the name must be correct, fock a or
fock$b. array1 must be a 2-dimension array with the same indices as the fock array.

7 List of domain specific SIAL programs and ACES III

capabilities

The following capabilities are provided for the computational chemistry electronic structure
software ACES III:

1. Hartree-Fock (HF) self-consistent field calculations (SCF) can be performed with re-
stricted spin (RHF), unrestricted spin (UHF), or restricted open-shell (ROHF) energies,
analytic gradients and analytic Hessians of the energy with respect to the molecular
geometry.

(a) RHF has all electrons confined to appear in the wave function in pairs with one
electron in the spin up state and the other electron in the spin down state but
both occupying the same orbital.

(b) UHF allows electrons with spin up to have different spatial, i.e. orbital, distribu-
tion from the electrons with spin down.

(c) ROHF wave functions are meaningful for molecules with an odd number of elec-
trons and treat the one odd-man-out electron separately and pair all other elec-
trons up like in the RHF wave function.

2. Second order many-body perturbation theory (MBPT2) also known as second order
Mller-Plesset (MP2) energies and analytic gradients and analytic Hessians.

3. Coupled cluster singles and doubles (CCSD) energies and analytic gradients. Pertur-
bative triples CCSD(T) energies can be computed as well.

4. Configuration interaction singles and doubles (CISD) excited states.

5. Coupled cluster equation-of-motion (CC-EOM) excited state energies are available, as
well as EOM ionization potentials (IP) and electron affinities (EA).

With the gradients, the equilibrium molecular geometry can be computed as the minimum of
the electronic energy as a function of atomic coordinates. For the methods without analytic
gradients, a geometry optimization is possible with fully numerical gradients. Harmonic
molecular vibrational frequencies can be computed by finite difference methods using gradi-
ents or second order finite difference methods using energies when analytic Hessians are not
available. Further details of available capabilities can be found be consulting the manual.

To be written: organize the list of programs and briefly describe each pro-
gram, full list with author 1

1. ccsd rhf ao sv1 diis5.sial
purpose:

80

2. ccsd rhf ao sv1 diis5 kraken.sial
purpose:

3. ccsd uhf ao dist1 diis5.sial
purpose:

4. ccsd uhf ao sv1 diis5.sial
purpose:

5. ccsd uhf ao sv2 diis5.sial
purpose:

6. ccsd uhf dropmo.sial
purpose:

7. ccsd uhf mo dist1 diis5.sial
purpose:

8. ccsd uhf mo sv1 diis5.sial
purpose:

9. ccsdpt rhf aaa new.sial
purpose:

10. ccsdpt rhf aaa new dist1.sial
purpose:

11. ccsdpt rhf aab new.sial
purpose:

12. ccsdpt rhf aab new dist1.sial
purpose:

13. ccsdpt rhf pp.sial
purpose:

14. ccsdpt rhf pp new4.sial
purpose:

15. ccsdpt uhf aax new.sial
purpose:

16. ccsdpt uhf bbx new.sial
purpose:

17. ccsdpt uhf d2 p1.sial
purpose:

18. ccsdpt uhf pp.sial
purpose:

81

19. ccsdpt uhf sv1.sial
purpose:

20. cis rhf.sial
purpose:

21. cis uhf.sial
purpose:

22. cis uhf mo.sial
purpose:

23. cis uhf mo ao.sial
purpose:

24. default jobflows
purpose:

25. ea eomcc.sial
purpose:

26. eccsd rhf.sial
purpose:

27. eccsd uhf.sial
purpose:

28. eom dea.sial
purpose:

29. eom dip.sial
purpose:

30. eomccsd density rhf.sial
purpose:

31. eomccsd density uhf.sial
purpose:

32. eomccsd uhf ao.sial
purpose:

33. eomccsd uhf mo.sial
purpose:

34. etran rhf.sial
purpose:

35. expand cc.sial
purpose:

82

36. expand ccsd rhf.sial
purpose:

37. expand lincc.sial
purpose:

38. expand linccsd rhf.sial
purpose:

39. gradscf.sial
purpose:

40. guess scf uhf finish.sial
purpose:

41. hbar uhf ao.sial
purpose:

42. hbar uhf ao eaeomcc.sial
purpose:

43. hbar uhf ao ipeomcc.sial
purpose:

44. hbar uhf mo.sial
purpose:

45. hess rhf mp2 seg.sial
purpose:

46. hess rhf sv1 ao1.sial
purpose:

47. hess rohf ao1 sv.sial
purpose:

48. hess rohf dist.sial
purpose:

49. hess uhf alt.sial
purpose:

50. hess uhf mp2 seg.sial
purpose:

51. hess uhf mp2 seg 1.sial
purpose:

52. hess uhf mp2 seg 2.sial
purpose:

83

53. hess uhf scf.sial
purpose:

54. hess uhf sv1 ao1.sial
purpose:

55. instab scf uhf mo ao.sial
purpose:

56. ip eomcc.sial
purpose:

57. lambda rhf.sial
purpose:

58. lambda rhf dropmo new.sial
purpose:

59. lambda rhf posteom 4dens.sial
purpose:

60. lambda uhf ao dist1 diis5.sial
purpose:

61. lambda uhf ao sv1 diis5.sial
purpose:

62. lambda uhf ao sv1 new.sial
purpose:

63. lambda uhf ao sv2 diis5.sial
purpose:

64. lambda uhf dropmo.sial
purpose:

65. lambda uhf dropmo new.sial
purpose:

66. lambda uhf mo dist1 diis5.sial
purpose:

67. lambda uhf mo sv1 diis5.sial
purpose:

68. lambda uhf posteom 4dens.sial
purpose:

69. lccsdpt rhf aaa.sial
purpose:

84

70. lccsdpt rhf aab.sial
purpose:

71. linccsd rhf ao sv1 cg.sial
purpose:

72. linccsd rhf dropmo.sial
purpose:

73. linccsd uhf ao dist1 cg.sial
purpose:

74. linccsd uhf ao sv2 cg.sial
purpose:

75. linccsd uhf dropmo.sial
purpose:

76. mp2 n6 rhf.sial
purpose:

77. mp2 n6 uhf.sial
purpose:

78. mp2 rhf sp.sial
purpose:

79. mp2 uhf ls1.sial
purpose:

80. mp2 uhf sp.sial
purpose:

81. mp2grad rhf.sial
purpose:

82. mp2grad rhf sv1.sial
purpose:

83. mp2grad rhf sv1 new.sial
purpose:

84. mp2grad rohf.sial
purpose:

85. mp2grad rohf alt.sial
purpose:

86. mp2grad uhf.sial
purpose:

85

87. mp2grad uhf sv1.sial
purpose:

88. mp2grad uhf sv1 new.sial
purpose:

89. non.sial
purpose:

90. one grad herm rhf ao sv1.sial
purpose:

91. one grad herm rhf ao sv1 dropmo.sial
purpose:

92. one grad herm uhf ao sv1 diis5.sial
purpose:

93. one grad herm uhf ao sv1 dropmo diis5.sial
purpose:

94. one grad rhf ao sv1.sial
purpose:

95. one grad rhf ao sv1 dropmo.sial
purpose:

96. one grad uhf ao dist1 diis5.sial
purpose:

97. one grad uhf ao sv1 diis5.sial
purpose:

98. one grad uhf ao sv1 dropmo diis5.sial
purpose:

99. one grad uhf mo dist1 diis5.sial
purpose:

100. one grad uhf mo sv1 diis5.sial
purpose:

101. rccsd rhf.sial
purpose:

102. rccsdpt aaa.sial
purpose:

103. rccsdpt aab.sial
purpose:

86

104. rccsdpt sub aaa.sial
purpose:

105. rccsdpt sub aab.sial
purpose:

106. reom rhf.sial
purpose:

107. reom rhf printvec 4dens.sial
purpose:

108. reom uhf.sial
purpose:

109. reom uhf printvec 4dens.sial
purpose:

110. rohf tran.sial
purpose:

111. scf aguess.sial
purpose:

112. scf ccsd rhf.sial
purpose:

113. scf comp rud.sial
purpose:

114. scf rhf aguess.sial
purpose:

115. scf rhf fast.sial
purpose:

116. scf rhf isymm diis10.sial
purpose:

117. scf rhf new.sial
purpose:

118. scf rud model.sial
purpose:

119. scf uhf aguess.sial
purpose:

120. scf uhf fast.sial
purpose:

87

121. scf uhf finish.sial
purpose:

122. scf uhf init.sial
purpose:

123. scf uhf isymm diis10.sial
purpose:

124. scf uhf new.sial
purpose:

125. sial config
purpose:

126. tran rhf ao sv1.sial
purpose:

127. tran rhf expanded.sial
purpose:

128. tran rhf expanded lincc.sial
purpose:

129. tran uhf ao dist1.sial
purpose:

130. tran uhf ao sv1.sial
purpose:

131. tran uhf expanded.sial
purpose:

132. tran uhf expanded lincc.sial
purpose:

133. tran uhf mo dist1.sial
purpose:

134. tran uhf mo sv1.sial
purpose:

135. tran uhf vvvv.sial
purpose:

136. two grad herm rhf ao sv1.sial
purpose:

137. two grad herm uhf ao sv1.sial
purpose:

88

138. two grad herm uhf ao sv1 dropmo.sial
purpose:

139. two grad rhf ao sv1.sial
purpose:

140. two grad uhf ao dist1.sial
purpose:

141. two grad uhf ao sv1.sial
purpose:

142. two grad uhf ao sv1 dropmo.sial
purpose:

143. two grad uhf mo dist1.sial
purpose:

144. two grad uhf mo sv1.sial
purpose:

8 Example Programs

8.1 SIAL program using a procedure, a served array and a dis-
tributed array

SIAL example1

aoindex lambda=1,norb

aoindex sigma=1,norb

aoindex mu=1,norb

aoindex nu=1,norb

moindex p=bocc,eocc

moindex q=bocc,eocc

moindex r=bvirt,evirt

moindex s=bvirt,evirt

served v(mu,nu,lambda,sigma) # the SIP knows how to distribute

the integral requests, it is not

specified in the language since it

can change every run

temp v1(p,nu,lambda,sigma)

temp v2(p,q,lambda,sigma)

temp v3(p,q,r,sigma)

distributed v4(p,q,r,s)

local c(mu,p)

PROC update

89

start new accumulate and checks on all outstanding ones

to make the SIP work efficiently several v4 = v3 * c must be allowed

to start so that of all accumulates in progress at least one

is ready every time accumulate is executed by the SIP

put v4(p,q,r,s) += v4(p,q,r,s)

return

ENDPROC update

create v4

pardo mu, nu

do lambda

do sigma

request v(mu,nu,lambda,sigma) sigma

ask for an integral block

the first call initiates a request

subsequent calls check that at

least one of the outstanding

requests completed and

makes a new request

because this fetch happens outside a 4-fold loop most likely

one outstanding request is sufficient

do p

v1(p,nu,lambda,sigma) = v(mu,nu,lambda,sigma) * c(mu,p)

do q

v2(p,q,lambda,sigma) = v1(p,nu,lambda,sigma) * c(nu,q)

do r

v3(p,q,r,sigma) = v2(p,q,lambda,sigma) * c(lambda,r)

do s

v4(p,q,r,s) = v3(p,q,r,sigma) * c(sigma,s)

call update

enddo s

enddo r

enddo q

enddo p

enddo sigma

enddo lambda

endpardo mu, nu

delete v4

ENDSIAL example1

8.2 SIAL program preparing a served array

SIAL example2

aoindex lambda=1,norb

aoindex sigma=1,norb

90

aoindex mu=1,norb

aoindex nu=1,norb

moindex p=bocc,eocc

moindex q=bocc,eocc

moindex r=bvirt,evirt

moindex s=bvirt,evirt

served v(mu,nu,lambda,sigma)

temp v1(p,nu,lambda,sigma)

temp v2(p,q,lambda,sigma)

temp v3(p,q,r,sigma)

temp v4tmp(p,q,r,s)

served v4(p,q,r,s)

local c(mu,p)

pardo mu, nu

do lambda

do sigma

request v(mu,nu,lambda,sigma) sigma

do p

v1(p,nu,lambda,sigma) = v(mu,nu,lambda,sigma) * c(mu,p)

do q

v2(p,q,lambda,sigma) = v1(p,nu,lambda,sigma) * c(nu,q)

do r

v3(p,q,r,sigma) = v2(p,q,lambda,sigma) * c(lambda,r)

do s

v4tmp(p,q,r,s) = v3(p,q,r,sigma) * c(sigma,s)

prepare v4(p,q,r,s) += v4tmp(p,q,r,s)

enddo s

enddo r

enddo q

enddo p

enddo sigma

enddo lambda

endpardo mu, nu

Now the program can use v4 with request v4.

ENDSIAL example2

8.3 SIAL program using served arrays

Consider a parallelization scheme for integral transformation that Victor Lotrich has imple-
mented in the UHF transformation code. This scheme basically narrows the range of the
PARDO while at the same time contracting out an entire index on one processor, thereby
making it possible to replace prepare +=’s with simple prepares.

Old style:

PARDO mu, nu, a, i

91

#

REQUEST Vxxai(mu,nu,a,i) i

#

DO a1

#

Txaai(mu,a1,a,i) = Vxxai(mu,nu,a,i)*ca(nu,a1)

PREPARE Vxaai(mu,a1,a,i) += Txaai(mu,a1,a,i)

#

ENDDO a1

#

ENDPARDO mu, nu, a, i

This loop distributes the parallelization over mu,nu,a,i in an effort to avoid re-reading
the data in the REQUEST. However, this code is forced to use PREPARE +=, which is
deadly on performance.

New style:

PARDO mu, a, i

#

ALLOCATE Lxaai(mu,*,a,i)

DO nu

REQUEST Vxxai(mu,nu,a,i) i

#

DO a1

#

T1xaai(mu,a1,a,i) = Vxxai(mu,nu,a,i)*ca(nu,a1)

Lxaai(mu,a1,a,i) += T1xaai(mu,a1,a,i)

#

ENDDO a1

ENDDO nu

#

DO a1

PREPARE Vxaai(mu,a1,a,i) = Lxaai(mu,a1,a,i)

ENDDO a1

DEALLOCATE Lxaai(mu,*,a,i)

ENDPARDO mu, a, i

This loop reduced the PARDO range to mu,a,i, but a complete contraction of the nu
index is performed for each (mu,a,i) combination. Thus we can do a PREPARE instead of
PREPARE +=. Note that we still are reading the entire set of input only once. There is
some wait time associated with the DEALLOCATE instruction until the PREPAREs are
complete, but this is much smaller than going the PREPARE += route. There are 3 loops
in this code that can be restructured with this same approach.

92

8.4 Special super instruction sum 64ss

The subroutine sums two blocks. The logic of unpacking the argument list into addresses
that can be used for a call to the routine dosum 64ss that does the actual work is clearly
shown.

C Copyright (c) 2003-2010 University of Florida

C

C This program is free software; you can redistribute it and/or modify

C it under the terms of the GNU General Public License as published by

C the Free Software Foundation; either version 2 of the License, or

C (at your option) any later version.

C This program is distributed in the hope that it will be useful,

C but WITHOUT ANY WARRANTY; without even the implied warranty of

C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

C GNU General Public License for more details.

C The GNU General Public License is included in this distribution

C in the file COPYRIGHT.

subroutine sum_64ss(array_table, narray_table,

* index_table,

* nindex_table, segment_table, nsegment_table,

* block_map_table, nblock_map_table,

* scalar_table, nscalar_table,

* address_table, op)

c--

c array1 --> 6D

c array2 --> 4D

c The last two indeces of array1 MUST be simple.

c--

implicit none

include ’interpreter.h’

include ’trace.h’

include ’mpif.h’

include ’epsilon.h’

#ifdef ALTIX

include ’sheap.h’

#endif

integer narray_table, nindex_table, nsegment_table,

* nblock_map_table

integer op(loptable_entry)

integer array_table(larray_table_entry, narray_table)

integer index_table(lindex_table_entry, nindex_table)

93

integer segment_table(lsegment_table_entry, nsegment_table)

integer block_map_table(lblock_map_entry, nblock_map_table)

integer nscalar_table

double precision scalar_table(nscalar_table)

integer*8 address_table(narray_table)

integer i, j, k

integer array, index, nindex, ierr

integer block, blkndx, seg

integer find_current_block

integer*8 indblk1, indblk2, get_block_index

integer stack

integer comm

integer fop1(mx_array_index), fop2(mx_array_index)

integer sop1(mx_array_index), sop2(mx_array_index)

integer sindex(6), findex(4)

integer type(mx_array_index)

integer na1, na2, ni1, ni2

integer*8 addr, get_index_from_base

double precision x(1)

double precision y(1)

#ifdef ALTIX

pointer (dptr, x)

#else

common x

#endif

#ifdef ALTIX

dptr = dshptr

#endif

c---

c Detrmine the parameters of the first array: c_result_array

c---

array = op(c_result_array)

nindex = array_table(c_nindex, array)

do i = 1, nindex

index = array_table(c_index_array1+i-1,array)

type(i) = index_table(c_index_type, index)

seg = index_table(c_current_seg,index)

94

sindex(i) = index

call get_index_segment(index, seg, segment_table,

* nsegment_table, index_table,

* nindex_table, sop1(i), sop2(i))

enddo

if (array_table(c_array_type,array) .eq. static_array) then

addr = address_table(array)

indblk1 = get_index_from_base(addr, x, 2)

else

block = find_current_block(array, array_table(1,array),

* index_table, nindex_table,

* segment_table, nsegment_table,

* block_map_table, blkndx)

stack = array_table(c_array_stack,array)

indblk1 = get_block_index(array, block, stack,

* blkndx, x, .true.)

endif

c---

c Detrmine the parameters of the second array: c_op1_array

c---

array = op(c_op1_array)

nindex = array_table(c_nindex, array)

do i = 1, nindex

index = array_table(c_index_array1+i-1,array)

type(i) = index_table(c_index_type, index)

seg = index_table(c_current_seg,index)

findex(i) = index

call get_index_segment(index, seg, segment_table,

* nsegment_table, index_table,

* nindex_table, fop1(i), fop2(i))

enddo

if (array_table(c_array_type,array) .eq. static_array) then

addr = address_table(array)

indblk2 = get_index_from_base(addr, x, 2)

else

block = find_current_block(array, array_table(1,array),

* index_table, nindex_table,

95

* segment_table, nsegment_table,

* block_map_table, blkndx)

stack = array_table(c_array_stack,array)

indblk2 = get_block_index(array, block, stack,

* blkndx, x, .true.)

endif

c write(6,*) ’ ******************** ’

c write(6,*) ’ OP1 :’, (sindex(i), i=1,4)

c write(6,*) ’ OP2 :’, (findex(i), i=1,4)

call dosum_64ss(x(indblk1), sindex,

* sop1(1), sop2(1), sop1(2), sop2(2),

* sop1(3), sop2(3), sop1(4), sop2(4),

* sop1(5), sop2(5), sop1(6), sop2(6),

* x(indblk2), findex,

* fop1(1), fop2(1), fop1(2), fop2(2),

* fop1(3), fop2(3), fop1(4), fop2(4))

return

end

subroutine dosum_64ss(x, sindex, a1, a2, b1, b2, c1, c2, d1, d2,

* s1, s2, ss1, ss2,

* y, findex, e1, e2, f1, f2, g1, g2, h1, h2)

implicit none

include ’interpreter.h’

include ’trace.h’

include ’mpif.h’

include ’epsilon.h’

#ifdef ALTIX

include ’sheap.h’

#endif

integer a1,a2,b1,b2,c1,c2,d1,d2

integer e1,e2,f1,f2,g1,g2,h1,h2

integer s1, s2, ss1, ss2

integer fop1(mx_array_index), fop2(mx_array_index)

integer sop1(mx_array_index), sop2(mx_array_index)

integer sindex(6), findex(4)

integer i, j, k, a, b, c, d

integer m, n, lda, ldb, ldc

96

double precision x(a1:a2,b1:b2,c1:c2,d1:d2,s1:s2,ss1:ss2)

double precision y(e1:e2,f1:f2,g1:g2,h1:h2), xtemp

do d = d1, d2

do c = c1, c2

do b = b1, b2

do a = a1, a2

c xtemp = y(a,b,c,d)

c do i = s1, s2

c do j = ss1, ss2

x(a,b,c,d,s1,ss1) = x(a,b,c,d,s1,ss1) + y(a,b,c,d) ! xtemp

c x(a,b,c,d,i,j) = x(a,b,c,d,i,j) + xtemp

c enddo

c enddo

enddo

enddo

enddo

enddo

return

end

8.5 Special super instruction set flags2

The subroutine takes the indices from an argument array-block and stores them for use by
a subsequent special super instructions.

C Copyright (c) 2003-2010 University of Florida

C

C This program is free software; you can redistribute it and/or modify

C it under the terms of the GNU General Public License as published by

C the Free Software Foundation; either version 2 of the License, or

C (at your option) any later version.

C This program is distributed in the hope that it will be useful,

C but WITHOUT ANY WARRANTY; without even the implied warranty of

C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

C GNU General Public License for more details.

C The GNU General Public License is included in this distribution

C in the file COPYRIGHT.

97

subroutine set_flags2(array_table, narray_table,

* index_table,

* nindex_table, segment_table, nsegment_table,

* block_map_table, nblock_map_table,

* scalar_table, nscalar_table,

* address_table, op)

c---

c Sets the indices of a 3-d static array in common block values.

c The first index is assumed to be the atom, the second is the component

c index (i. e. x,y, or z), and the 3rd is the center.

c

c These indices are stored in the d2int_com common block, and are meant

c to indicate the atom, component, and center on which to calculate a

c single block of derivative integrals.

c

c Example:

c index jatom = 1, natoms

c index jx = 1,3

c static flags2(jatom, jx)

c

c taoint(mu,nu,lambda, sigma) = 0.

c do jatom

c do jx

c execute set_flags2 flags2(jatom, jx)

c execute d2int aoint(mu, nu, lambda, sigma)

c taoint(mu,nu,lambda, sigma) += aoint(mu, nu, lambda, sigma)

c enddo jx

c enddo jatom

c

c--

implicit none

include ’interpreter.h’

include ’mpif.h’

include ’trace.h’

include ’parallel_info.h’

common /d2int_com/jatom, jx, jcenter

integer jatom, jx, jcenter

double precision flags_value

integer narray_table, nindex_table, nsegment_table,

* nblock_map_table

integer op(loptable_entry)

integer array_table(larray_table_entry, narray_table)

integer index_table(lindex_table_entry, nindex_table)

98

integer segment_table(lsegment_table_entry, nsegment_table)

integer block_map_table(lblock_map_entry, nblock_map_table)

integer nscalar_table

double precision scalar_table(nscalar_table)

integer*8 address_table(narray_table)

integer ierr, array, array_type, ind, nind

integer i

array = op(c_result_array)

if (array .lt. 1 .or. array .gt. narray_table) then

print *,’Error: Invalid array in set_flags, line ’,

* current_line

print *,’Array index is ’,array,’ Allowable values are ’,

* ’ 1 through ’,narray_table

call abort_job()

endif

nind = array_table(c_nindex, array)

if (nind .ne. 2) then

print *,’Error: set_flags2 requires a 2-index array.’

call abort_job()

endif

c---

c Atom, component, and center indices are determined from the c_current_seg

c field of the 1st and 2nd index of the array.

c--

ind = array_table(c_index_array1,array)

jatom = index_table(c_current_seg, ind)

ind = array_table(c_index_array1+1,array)

jx = index_table(c_current_seg, ind)

c---

c Set jcenter to 0 as it is not currently being used.

c---

jcenter = 0

return

end

99

9 Format of the .sio file

File type is binary unformatted. Each .sio file contains a 7-word header record followed by
4 tables, each of which are created by the compiler.

9.1 Header record

1. Id
An identifier used to check that this is truly a .sio file (currently 70707).

2. Version
Version identifier

3. Release
Release identifier

4. Nindex table
Number of entries in the index table.

5. Narray table
Number of entries in the array table.

6. Noptable
Number of entries in the operation table.

7. Nscalar table
Number of entries in the scalar table.

The header record is followed by the index table, array table, operation table, and scalar
table, in that order. All data is integer, except for the scalar table, which is double precision.
Items that are filled in at run-time will be denoted by RT.

9.2 Index Table

Consists of Nindex table entries. Each entry has a structure defined in the file ACE-
SIII/include/interpreter.h. The index table structure is as follows.

1. Index size
Length of the index in words. The compiler fills in an appropriate symbolic constant
for each type of index, and the actual size is filled in at run-time when the true size is
determined from job parameters.

2. Nsegments
Number of segments (RT).

3. Current seg
Current segment to process. (RT).

100

4. Bseg
Beginning segment of the index. (RT).

5. Eseg
Ending segment of the index. (RT).

6. Index type
Type of index (aoindex=1001, moindex=1002, etc.)

7. Next seg
Used in loop operations to predict the next segment to process. (RT)

9.3 Array Table

Each array table consists of entries of integer data as follows:

1. Nindex
Number of indices defined for the array.

2. Array type
Type of the array (i. e. static, distributed, served).

3. Numblks
Total number of blocks in the array (RT).

4. Index array1
The following mx array index words contain the slots for the array’s indices. These
indices point to index table entries, corresponding to the description of each index.
The compiler inserts the indices used in the array definition, but the run-time fills
in the actual indices used in references to the array at run-time as an instruction is
processed.

5. Index range1
The following mx array index words are used to save the original indices used in the
array definition. In some cases, this information is required to properly process an
instruction, and the indices in the index array1 field are possibly not the correct types
due to being changed in the course of processing instructions (RT).

6. Block map
A pointer to the beginning of the array’s block map table entries. (RT).

7. Scalar index
A pointer into the scalar table (used only for scalar values). Each scalar actually has
an array table entry, with the array type set to scalar value (205). The scalar index
field of the array table points into the scalar table to the actual scalar value itself.

8. Create flag
Used to indicate that the array has entered scope via a create instruction (RT).

101

9. Put flag
Used to indicate that the array has had put instructions executed in the current loop
with this array as target (RT)

10. Prepare flag
Used to indicate that the array has had prepare instructions executed in the current
loop with this array as target (RT).

11. Current blkndx
Points to the current block of the array in the block manager’s data structures. The
current block is the block of the array corresponding to each of its indices having the
current seg value of the index table. The current blkndx is used to quickly reference
this block without having to perform a search.

12. Array stack
The memory stack on which the current block is located.

9.4 Operation Table

The operation table consists of the executable instructions, which have the following format.

1. Opcode
Operation code for the instruction.

2. Op array1
First operand array of the instruction.

3. Op array2
Second operand array of the instruction.

4. Result array
Result array of the instruction.

5. Ind1
The flowing mx array index words of the instruction contain the array indices of the
block of the result array that this instruction references.

6. User sub
Pointer into the User sub table (used if this instruction is an execute).

7. Instr timer
Used to carry the timer index if a timer has been registered for this instruction (RT)

8. Op blkndx
Pointer to the block manager’s data structures indicating the block created as the
result of this instruction. This is set when the instruction is executed, and used later
in freeing the block at the end of the loop in which it came into scope. (RT)

102

9. Opblock
Used to carry the block number (relative to the blocks in result array) of the block
created by this instruction. Used similarly to the Op blkndx field. (RT)

10. Oploop
Loop initialization flag. (RT)

11. Pardo chunk size
Used in load-balancing pardo instruction (RT)

12. Pardo batch end
Used in load-balancing pardo instruction (RT)

13. Pardo next batch start
Used in load-balancing pardo instruction (RT)

14. Pardo batch
Current value is “batch” of data being processed by this instruction (if it is a Pardo)
(RT).

15. Pardo max batch
Maximum batch that this pardo will process (RT).

16. Pardo signal
Used to reset a Pardo instruction (RT).

17. Server stat key
A key passed to the server indicating which line of SIAL code generated this instruction,
if it was a REQUEST or PREPARE. Used to track server timing data. (RT)

18. Lineno
SIAL line number of this instruction.

9.5 Scalar Table

The scalar table simply consists of the values of each of the scalars used in the SIAL program.
For instance, if there is a SIAL instruction
Esum = 0.0
then the instruction will have an array table reference pointing to the scalar table. The
scalar table entry pointed to will contain the double precision 0. Some of the scalar table
entries (i. e. those which are linked to pre-defined constants, such as scfeneg and totenerg)
are filled in at run-time from parameter data and/or JOBARC data once the actual values
are known.

103

	Overview
	Preparing for a new version of SIAL, SIP, and ACES III *

	Super instruction programming environment
	Programming guidelines
	SIAL development environment *
	SIAL Compiler
	SIO Object File
	SIP Runtime processor
	Domain specification file

	SIP as a Python extension *
	Functional view
	Parallel execution

	Language definition
	Syntax
	Domain specific predefined constants
	Index constants:
	Ordering relations for index constants:
	Predefined arrays

	Declarations
	Multi-segment indices
	Scoping rules
	PERSISTENT qualifier *
	Example formula using high-rank arrays (Victor)
	Example formula using high-rank arrays (Dmitry)
	Support for high-rank arrays *
	Proposal: Support arbitrary rank in SIAL
	Proposal: Use compound indices in SIAL

	Control statements
	Subindices
	PARDO with processor-groups *
	PARDO with grouping *

	Operation statements
	Parallel library calls *
	Synchronization operations
	Super instructions
	Super instructions argument list *
	Super instruction for computing integrals

	Parallel sections *
	Informal syntax
	Grammar
	Constraints
	Barriers
	Allocating processors to sections

	Execution environment
	SIP Components
	The IOCOMPANY
	Worker companies
	Super instruction processing
	Executing super instructions on GPGPUs

	Memory management
	Data blocks and block stacks
	Memory estimate from a dry run
	Block stack management
	Domain specific memory management

	Execution management
	Role assignment to tasks
	PARDO processing
	End of loop processing
	IO Server activity
	Fault tolerance *
	ScaLAPACK interoperability *

	Software development environment
	Eclispe IDE
	SIAL IDE Features
	Building or compiling SIAL programs
	Running SIAL programs
	Performance analysis tools

	Listing of special super instructions
	Generic special super instructions
	ACES III domain specific super instructions

	List of domain specific SIAL programs and ACES III capabilities
	Example Programs
	SIAL program using a procedure, a served array and a distributed array
	SIAL program preparing a served array
	SIAL program using served arrays
	Special super instruction sum_64ss
	Special super instruction set_flags2

	Format of the .sio file
	Header record
	Index Table
	Array Table
	Operation Table
	Scalar Table

