Explicitly-correlated Gaussian geminals in electronic structure calculations

Krzysztof Szalewicz

Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA and
Laboratoire d’Astrophysique de l’Observatoire de Grenoble, 414 Rue de la Piscine, 38041
Grenoble, France

Explicitly-correlated basis functions, i.e., functions containing an explicit dependence on the inter-electronic distance \(r_{12} \), can describe the electron-electron cusps in the wave functions much better than products of orbitals for a given size of basis set, but the costs of calculations are significantly higher in the former case. Explicitly-correlated functions have been the main tool for investigations of two-electron system since the early days of quantum mechanics. In 1960s, Boys and Singer [1, 2] introduced the basis set of Gaussian-type geminals (GTG), i.e., functions with an \(\exp(-r_{12}^2) \) dependence, later proved to be complete [3, 4]. For \(\text{H}_2 \), such functions give results competitive [5, 6] with those produced by the best alternative approaches, and at the same time GTGs can be applied to many-electron systems. GTGs can be used to represent pair functions in many-body perturbation theory (MBPT) and coupled-cluster (CC) methods in the so-called first-quantized approach [7–9]. For small molecules, the GTG basis appears to be able to reach accuracies higher than other approaches that are currently available. In particular, it has been possible to compute a helium dimer potential [10–12] which predicts thermophysical properties of helium so well that it has been used to calibrate some measurement standards. GTGs have been applied to molecules containing a dozen or so electrons [13], but such calculations are very time consuming due to the necessity of exponent optimization [14]. An alternative explicitly-correlated approach applicable to many-electron systems was proposed by Kutzelnigg and Klopper [15]. In this approach, \(r_{12} \) appears linearly, multiplied by products of orbitals, but the integrals are computed approximately by inserting resolutions of identity. Recently, the two approaches were merged in a sense in the so-called F12 method which uses a linear combination of GTGs instead of the \(r_{12} \) factor [16, 17].