Experimental Measurement and Theory of Substituent Effects in π-Hydrogen Bonding: Complexes of Substituted Phenols with Benzene

Valia Nikolova,¹ Sonia Ilieva,¹ Boris Galabov,¹ Henry F. Schaefer III²

¹Department of Chemistry, University of Sofia, Sofia 1164, Bulgaria;
²Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602

IR spectroscopic experiments and DFT computations reveal the effects of aromatic substituents on π-hydrogen bonding between substituted phenol derivatives and benzene. B3LYP and PBE0 density functionals combined with the 6-311++(2df,2p) basis set were employed in modeling the interactions in simulated CCl₄ solution. Unexpectedly stable and almost identical structures were established for all twenty studied complexes. Simultaneous formation of two π-hydrogen bonds (red-shifting O-H…π and blue-shifting ortho-C-H…π) contribute to the stability of these T-shaped complexes. The interaction of the acidic phenol O-H proton-donating group with the benzene π-system dominates the complex formation. The shifts of O-H stretching frequencies for the different phenols are much higher (44 - 74 cm⁻¹) than the isolated C-H frequency variations (2 - 12 cm⁻¹). Strong effects on hydrogen bonding energies and frequency shifts of electron-withdrawing aromatic substituents and very weak influence of electron-donating groups on the π-hydrogen bonding are established. Experimental quantities and theoretical parameters are employed in rationalizing the properties of these π-hydrogen bonded complexes. The experimental pKa constants for the entire series of twenty substituted phenols correlate excellently (r = 0.991) with the measured O-H frequency shifts (ΔνOH). Thus, the acidities of the proton-donating phenols describe quantitatively the hydrogen bonding process. The computed interaction energies correlate well with three theoretical parameters, reflecting properties of the O-H hydrogen: NBO and Hirshfeld atomic charges (qH), and electrostatic potential at nuclei values (VH). The results obtained show that the variations of π-hydrogen bonding energies and ΔνOH for the systems considered are governed by the classic aromatic substituent effects, comprising both resonance and direct through-space influences.