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since had become my second country psychologically and 
spiritually.

Thus as an instructor in the 1987 Winter Institute I met 
several Mexican participants, including Alberto Vela. Over 
the years, as we both worked on density functional theory 
(DFT) in density fitting codes (deMon [1, 2] for him, GTOFF 
[3–7] for me), Alberto and I shared many discussions and 
became personal friends as well. But we did not collaborate, 
as our career paths differed. That changed in 2006. At the 
IMRC meeting in Cancún, he insisted that I should look in 
detail at results [8] he was getting from modifying the PBE 
exchange–correlation (XC) functional [9]. I am the benefi-
ciary of his insistence. Eventually, after much discussion and 
many calculations, his original insight led to the VMT XC 
functional [10] which is the topic of renewed focus here. 
More broadly, his initiative led to a major collaborative effort 
which continues to this day, exploring what are the real lim-
its of performance of generalized gradient approximation 
(GGA) and meta-GGA XC functionals [11–18].

Although Alberto has seen the basic results in this paper 
in the form of slides in talks, I never had written about the 
work, because the key aspect of the results still is a puzzle. 
In that spirit, I offer the puzzle here, with thanks for col-
laboration, hospitality, and friendship. !Feliz Cumpleaños!

2 � Formal setting

Offering an attractive balance of accuracy, range of appli-
cability, and computational cost as they do, GGA XC func-
tionals are used widely today, especially for the prediction 
of structural properties of large molecules, clusters, layered 
periodic systems, and solids. Though there are more refined 
rungs of the Perdew–Schmidt ladder of functional com-
plexity [19] those rungs are not at issue here. Rather, the 
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1 � Commendation

One of the hallmarks of Quantum Theory Project from its 
beginning until the late 1980s was the offering of Winter 
Institutes. They were intense short courses in many-elec-
tron theory and methods and their forefront computational 
implementation. QTP’s founder, Per-Olov Löwdin, long 
was interested in educating young scientists from Latin 
American. By the 1980s, that was increasingly his focus 
for the Winter Institutes. The focus suited me, as my sons’ 
maternal grandparents were Mexicans and México long 
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challenge is to extract as much physical accuracy over as 
broad a set of systems as possible from the simple GGA 
form. The practical motivation is computational speed. The 
intellectual motivation is the elegant purity of orbital-free 
DFT.

A GGA for the X energy, the focus of much of the work 
with Alberto, has the form

Here n(r) is the electron number density, the dimensionless 
density gradient variable s is

and

(Hartree atomic units are used unless otherwise stated.) 
Constraint-based development of Fx is challenged by a pau-
city of rigorous information about its behavior. Any reason-
able GGA must have Fx(s → 0) = 1.0 to maintain accord 
with the homogeneous electron gas (HEG). Determination 
of other useful restrictions on the behavior of Fx(s) is a 
challenge. Two popular functionals illustrate the point. Sup-
posedly the most heavily cited paper in physics is for the 
PBE functional [9]. Though PBE was presented as a sim-
plification of the PW-91 GGA [20], from the perspective 
of constraint-based development, there are notable qualita-
tive differences between them. The PW-91 X enhancement 
factor FPW91

x
 vanishes in the limit of large reduced density 

gradient, s → ∞, whereas lims→∞ F
PBE
x

= 1.804. Thus 
PW-91 fulfills a known constraint [21], but PBE does not. 
The constant to which PBE goes is set by imposition of the 
Lieb–Oxford bound [22, 23],

where

The LO value for the constant is

Spin-scaling then gives �LO/21/3 = 1.804 (A slightly more 
restrictive �CH = 2.215 was obtained by Chan and Handy 
[24]. The difference does not matter here.) PW-91 actually 
satisfies the LO bound on the low side by having a lower 
maximum value for its enhancement factor than PBE, 
namely FPW91

x
≤ 1.641.
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x

[n]
≤ �LO

(5)E
LDA
x

[n] = cx

∫

drn
4/3(r).

(6)�LO = 2.273

The paucity of rigorous information is this. It is well 
understood that the meaningful range of s is at most 
0 ≤ s ≤ 5 [15, 25, 26] in physical systems. Clearly, the 
constraints just summarized leave much unspecified for the 
behavior of Fx(s) in that range. In fact, the success of PBE 
might seem to suggest that even the s → ∞ limit may be 
of little consequence. Plots comparing FPW91

x
 and FPBE

x
 are 

widely available; see Fig. 1 of Ref. [11] for example. Study 
of such plots amplifies curiosity about optimum design of 
F
GGA
x

 in that region. An example of a redesign is the RPBE 
functional [27].

Motivated by the notion of locally varying imposition 
of the LO bound in that s region, Vela [8] introduced what 
developed into the VMT functional [10]. It has the form

Either µ = µPBE = 0.21951 from original PBE or 
µ = µGEA = 10/81 from the gradient expansion may be 
used.

Vela et al. [10] give the rationale for the design choices 
made in VMT on 0 ≤ s ≤ 5. Retrospectively, the VMT 
argument can be summarized as follows. The local LO 
bound is important for universality. That sets α for a given 
choice of µ (FVMT

x
 has a single maximum). However, large 

s corresponds to low densities that are in fact smooth, 
hence weakly inhomogeneous, so the enhancement factor 
in that regime should recover the local-density approxima-
tion, i.e., FVMT

x
= 1. Since experience with PBE seems to 

show that the exact non-uniform scaling asymptotic con-
straint [21] is of little consequence, one can ignore that 
constraint and simply extend the LDA all the way out, 
lims→∞ F

VMT
x

= 1.
Thus, VMT X has an enhancement factor which, except 

at one point, always is tighter than the LO bound and which 
gives an LDA-like description of systems with both near-
zero and large s. On typical molecular test sets, VMT does 
better for mean absolute atomization energy errors than 
PBE by about a factor of two and otherwise is competitive 
on the slightly better side, except for bond-length errors 
which are worse by about a factor of two (but small none-
theless). See, for example, Table II of Ref. [15].

3 � Physical system and computational details

What sets VMT X apart from almost all of the newer func-
tionals from our collaboration [11–13, 15, 17] is the strong 
reliance on the HEG limit, Fx = 1. Given the importance of 
free-electron metals, that reliance almost immediately spurs 
the question of VMT versus LDA performance in such sys-
tems. Note that our VT{8,4} functional [18], which has a 
plateau around FVT{8,4}

x = 1 for intermediate values of s, 

(7)F
VMT
x

= 1+
µs2 exp(−αs2)

1+ µs2
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is close to VMT in this sense. Designed as a modification 
of VMT X, one would expect that test calculations with 
VT{8,4} would be less decisive than those with VMT, so 
only VMT is considered here.

Crystalline Li is the obvious physical system choice. 
That choice actually raises more subtle challenges than the 
simple free-electron system issue. While the zero-tempera-
ture equilibrium for Li generally is characterized as nearly-
free-electron, it has been known since the middle 1980s 
that the compressed system is rather more complicated 
[28–31]. That insight was very substantially deepened in 
1999 when Neaton and Ashcroft predicted low-symmetry 
phases [32] under pressure. By now, the Li phase diagram 
is known to be quite complicated [33]. Review of the sub-
stantial literature is well beyond the scope of this work. 
The essential point is that this richness of phases along the 
cold curve (zero-temperature equation of state) suggests 
that comparative calculations for various functionals that 
treat intermediate-magnitude regions of s distinctly might 
be instructive. In particular, how does a functional such as 
VMT, with its LDA-like behavior at both small and large s, 
handle the deviation from HEG-behavior found in the com-
pressed phases of Li?

I explored these questions with a series of all-electron 
calculations. To confine the problem in a reasonable scope, 
I examined the relative energetics of the hcp, fcc, and bcc 
phases. The experimental low-temperature equilibrium 
phase of Li generally is thought to be a complicated hexag-
onal one, usually taken to be 9R [34, 35]. Matters are more 
subtle however, as there is substantial evidence of polytype 
behavior as well [36–39]. For present purposes, the subtlety 
of the rearrangement energetics of hcp → fcc is itself an 
important test.

All-electron calculations are preferable in this setting: 
They enable as nearly exclusive a focus as possible on 
effects of the XC functional. Which all-electron basis? One 
must be careful in doing compression studies with cellu-
larly decomposed basis sets such as linearized augmented-
plane-wave (LAPW); see Ref. [40] for brief discussion. So 
I used the Gaussian basis GTOFF code [3–7].

Gaussian basis sets for crystalline systems under com-
pression also require some care in construction. After con-
siderable testing, I found that for the Kohn–Sham orbitals 
the uncontracted 10s6p3d set constructed long ago [41] 
was not only difficult to improve upon but had the addi-
tional virtue of providing continuity with earlier calcula-
tions. See Table II of Ref. [41] for the orbital exponents. 
For the variational Coulomb charge density fitting basis 
and XC fitting basis, I used an 11s set which was derived 
from a 9s set developed by Boettger [42]. The exponents 
are 958.00, 239.00, 112.00, 46.29, 19.32, 7.78, 3.24, 1.41, 
0.610, 0.270, and 0.080. Brillouin Zone scan densities were 
24× 24× 24 for the cubic systems (413 total points in the 

irreducible wedge of the BZ) and 24× 24× 12 for hcp 
(427 points in the irreducible wedge).

GTOFF does not support analytical geometry opti-
mization, so calculations were done at eight cell 
volumes per atom, 1.078 Ω0, 1.025Ω0, 1.00Ω0,  
0.976Ω0, 0.931Ω0, 0.854Ω0, 0.732Ω0 , and 0.640Ω0,  
with Ω0 = 142.4 au3/atom the reference equilibrium 
experimental volume [43] used by Boettger and Albers 
[31]. For one functional, VMT with µGE , three additional 
volumes were used for hcp and fcc, 0.8235Ω0, 0.793Ω0,  
and 0.7625Ω0. The hcp calculations were done at ideal 
c/a =

√
8/3. Calculated total energies per atom were fit-

ted to the stabilized jellium equation of state (SJEOS) [42] 
to extract energy minima, the corresponding lattice param-
eters, and bulk moduli for each phase separately. Standard 
deviations of those energy fits were < 1× 10−4, in many 
cases an order of magnitude or two smaller. It is known 
that the pressure-induced population shifts between bands 
(shells) are a very smooth function of compression; see for 
example Fig. 2 in Ref. [29].

As already noted, DFT calculations of the Li crystalline 
phases date from the 1980s. Unlike now, at that time vari-
ous versions of the local-spin-density approximation were 
in use. For the sake of historical continuity and demon-
stration of reproducibility, two of those, Hedin–Lundqvist 
(HL) [44] and Rajagopal–Singhal–Kimball (RSK) [45, 46] 
were included, as well as simple local exchange, Eq. (5). 
In the early literature of DFT calculations on Li, that was 
called KSG, a convention I follow here for ease of com-
parison. Modern functionals are the Perdew–Zunger (PZ) 
LDA [47], PBE GGA [9], and its PBEsol variant [48]. 
VMT with µPBE (denoted VMTPBE) is the counterpart to 
PBE, while VMT with µGE, denoted VMTGE, is the PBEsol 
counterpart. Both used PBE correlation.

4 � Results and discussion

Begin with the predicted equilibria. To facilitate compari-
son and confirm reproducibility, first consider the histori-
cal functionals, KSG, HL, and RSK, then the modern ones, 
PZ, PBE, VMTPBE, PBEsol, and VMTGE. For the historical 
functionals, Table 1 gives the lowest-energy lattice param-
eters ae in au, the associated cell volume per atom Ωe in 
au3/atom, equilibrium total energies E per atom (from the 
present calculations only), and the inter-phase energy dif-
ferences per atom (both in Hartree au), and the hcp bulk 
modulus B0 in Mbar. The energy differences are ordered as 
in the subscripts, thus �Ehcp−fcc = Ehcp − Efcc. The ear-
lier calculations are labeled with the initials of the authors: 
“BA” for the linearized muffin-tin-orbital (LMTO) calcula-
tions from Boettger and Albers, [31], “BT” for the gauss-
ian orbital calculations by Boettger and Trickey with the 
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BNDPKG code [28], and “NTBS” for the WIEN code 
full-potential LAPW (FLAPW) calculations by Nobel et al. 
[40].

Table 1 confirms that the present and early KSG results 
from two independent Gaussian basis codes agree well 
on lattice parameters and fcc–bcc energy difference. The 
BA cellular basis lattice parameters are longer. There is 
also consistency between the present calculation and the 
NTBS WIEN FLAPW calculation of ae,hcp for the HL func-
tional. Both results are consistent with the physical argu-
ment, borne out by experience, that the internal structure 
of such basis sets results in prediction of stiffer crystals 
than from gaussian basis sets. In contrast to those mod-
est differences, however, the various calculated interphase 
energy shifts differ substantially. In most instances, the 
interphase energy differences from gaussian basis calcu-
lations are larger in magnitude than for the cellular basis 
(LMTO, FLAPW) calculations. To the extent comparison is 

possible, the phase ordering nevertheless is the same. That 
these agreements and disparities long have been known is 
evident from the age of several of the results in that Table. 
In any event, there are no significant inconsistencies of the 
present calculations with well-established findings. Repro-
ducibility is verified.

Now consider the equilibrium phase description given 
by the modern functionals. Table 2 presents results for  PZ, 
PBE, VMTPBE, PBEsol, and VMTGE. (Isolated atom total 
energies from all five modern functionals are given for the 
Appendix.) To provide comparison, results for bcc symme-
try from plane-wave, projector augmented wave calcula-
tions by Csonka et  al. using the VASP code [49] for PZ, 
PBE, and PBEsol functionals are given as well. The bcc 
lattice parameters from PZ, PBE, and PBEsol calculated 
in the present work agree within 0.012 au or better with 
the VASP PAW results. The bcc bulk moduli from VASP 
are lower for all three functionals than from the GTOFF 

Table 1   Calculated equilibrium properties for hcp, fcc, and bcc Li 
from older functionals. See text for notation and references. Lowest-
energy lattice parameters (au), with corresponding cell volume per 

atom (au3/atom) in parentheses, followed by equilibrium total ener-
gies E per atom (present work only, Hartree/atom), inter-phase energy 
differences �E (Hartree/atom), and hcp bulk modulus (Mbar)

KSG KSG (BT) KSG (BA) HL HL (NTBS) RSK RSK (BT)

ae hcp 5.866 (142.7) – 5.91 (146.0) 5.646 (127.3) 5.659 (128.1) 5.617 (125.3) –

ae fcc 8.282 (142.0) 8.28 (141.9) 8.36 (146.1) 7.974 (126.8) – 7.943 (125.3) 7.94 (125.1)

ae bcc 6.597 (143.6) 6.59 (143.1) 6.63 (145.7) 6.350 (128.0) – 6.334 (127.1) 6.32 (126.2)

Ehcp −7.2375144 – – −7.4160294 – −7.4613234 –

Efcc −7.2374170 – – −7.4159794 – −7.4613144 –

Ebcc −7.2371312 – – −7.4156194 – −7.4609362 –

�Ehcp−fcc −0.000097 – −0.000035 −0.000050 −0.00004 −0.000009 –

�Ehcp−bcc −0.000383 – −0.00014 −0.000410 −0.00016 −0.000387 –

�Efcc−bcc −0.000286 −0.00025 −0.00011 −0.000360 −0.00012 −0.000378 −0.00045

B0, hcp 0.127 – 0.159 0.159 – 0.152 –

Table 2   As in Table 1 for 
modern functionals. See 
text for notation. B0 for bcc 
added. Lattice parameters, cell 
volumes, and B0 values for the 
bcc phase from Csonka et al. 
[49] also added in brackets 
below the corresponding values 
from the present calculations

PZ PBE VMTPBE PBEsol VMTGE

ae hcp 5.644 (127.1) 5.777 (136.3) 5.810 (138.7) 5.774 (136.2) 5.776 (136.2)

ae fcc 7.974 (126.8) 8.164 (136.0) 8.212 (138.4) 8.163 (136.0) 8.163 (136.0)

 ae bcc 6.350 (128.0) 6.492 (136.8) 6.516 (138.3) 6.490 (136.7) 6.516 (138.4)

[6.355 (128.3)] [6.480 (136.0)] – [6.478 (135.9)] –

Ehcp −7.4086898 −7.5207440 −7.5307576 −7.4588113 −7.4632081

Efcc −7.4086397 −7.5207271 −7.5307415 −7.4587855 −7.4631803

Ebcc −7.4082775 −7.5203174 −7.5303326 −7.4583712 −7.4627352

�Ehcp−fcc −0.000050 −0.000017 −0.000016 −0.000026 −0.000028

�Ehcp−bcc −0.000412 −0.000427 −0.000425 −0.000440 −0.000472

�Efcc−bcc −0.000362 −0.000410 −0.000409 −0.000414 −0.000406

 B0, bcc 0.156 0.144 0.145 0.140 0.137

[0.152] [0.138] – [0.138] –

B0, hcp 0.158 0.144 0.140 0.141 0.128
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calculations but by 4 % or less. Presumably, the difference 
traces to the PAW technique. I expect that inter-code dif-
ferences for the hcp bulk moduli would be similarly small.

It is reassuring that all five modern functionals (as well 
as old-fashioned KSG) give the same relative ordering of 
hcp, fcc, and bcc energies at equilibrium, with roughly the 
same energy intervals. Second, it is remarkable that the 
simplest Slater LDA (KSG) gives a bcc equilibrium lattice 
parameter, 6.597 au, quite close to the fixed-node diffusion 
Monte Carlo value, 6.58  au [50]. The presumably more 
accurate, more soundly based PZ LSDA substantially wors-
ens that, the usual LDA over-binding story, so that what the 
GGA then must do is to compensate.

All of the calculated cell constants are short. In that con-
text, despite its favoring LDA limits, VMT does as expected 
of a GGA X functional and lengthens lattice parameters 
compared to LDA. VMT does so slightly more than its 
PBE counterparts: abcc,VMTPBE = abcc,VMTGE = 6.516 ver-
sus 6.492   au (PBE) and 6.490  au (PBEsol). In the hcp 
case, the VMTPBE lengthening relative to PBE is 0.03 au, 
but VMTGE lengthening relative to PBEsol is negligible. 
The same behavior occurs for fcc; ae is 0.05 au longer for 
VMTPBE than for PBE, but unchanged for VMTGE versus 
PBEsol.

In the midst of the general consistency of lattice constant 
results in equilibrium quantities, there is a striking anom-
aly. Namely, the B0,hcp from VMTGE is much lower than 
any other GGA value, 0.128 Mbar, essentially the same 
as the KSG result (0.127 Mbar). I return to this anomaly 
below. Before that, consider the behavior with pressure.

With one exception, also discussed in detail below, 
the first pressure-induced phase transition is hcp to fcc 
for all of the XC functionals. Transition pressures in 
Mbar (1 Mbar = 100 Gpa) and compressions (rela-
tive to calculated equilibrium hcp volume) are given 
in Table  3. For comparison, Boettger and Albers [31] 
reported Phcp−fcc = 0.08 Mbar at volume compression 
Ωhcp−fcc/Ωhcp,e = 0.73 for the HL functional, whereas 
Nobel et  al. [40] reported Ωhcp−fcc/Ωhcp,e between 0.72 
and 0.89 for the HL functional, but did not report Phcp−fcc.

For VMTPBE, the hcp → fcc transition pressure goes 
up a little compared to PBE, so there is a hint of favoring 
LDA, but not a strong one. It is technically a bit difficult 
to find the hcp → fcc transition in PBEsol, but it is there. 
In contrast, the VMTGE transition is indistinct, to the point 

that I am not entirely comfortable with stating that it was 
located. Only by adding the three additional volumes men-
tioned above was I able to get the transition volume value 
shown in Table  4 for VMTGE. Superficially the resulting 
SJEOS fit puts the transition at about Ω/Ω0 = 0.76. How-
ever, examination of the data along the fitted EOS does not 
really support that conclusion. From 120.6 au3/atom down 
to 110 au3/atom, the fitted Ehcp lies about 10 micro-Hartree 
below the fitted Efcc curve. Then for 109.6 au3/atom down 
to 103.6 au3/atom, the two energies are identical, then fcc 
lies below by about 10 micro-Hartree/atom down through 
101.6 au3/atom, then the energies of the two phases are 
equal again, etc. In essence, for VMTGE the two curves 
(hcp, fcc) run almost parallel.

The standard reasoning regarding the value of the gradi-
ent expansion coefficient, µ, in PBE is that µGE is needed 
to get solids right from PBE (i.e., shift to PBEsol), whereas 
µ = 0.27583 improves the performance on molecules as 
compared with the original µPBE [17]. In that context, the 
Li results from VMTGE are a bit puzzling and not easy to 
explain. As reported above, VMTGE notably lowers the bulk 
modulus of the equilibrium hcp phase compared to modern 
LDA and to the other GGAs, even compared to PBEsol. On 
this quantity, VMTGE replicates simplest KSG X, an out-
come consistent with the interpretation that VMTGE favors 
LDA but inconsistent with the PZ LDA result.

Taken at face value, the fitted hcp → fcc transition pres-
sure for VMTGE is consistent with the bulk modulus soften-
ing. But beneath that consistency is the striking result that 
VMTGE yields near-coexistence of the hcp and fcc phases 
without a clear transition between them. In the great vari-
ety of DFT calculations of martensitic phase transitions in 
elemental solids that sort of behavior has not, to my knowl-
edge, been encountered before.

As mentioned already, there is evidence that the ground 
state of Li may not be of a pure crystalline symmetry but a 
polytype [36–39]. Most recently, Pichl et al. [39] proposed 
that the experimental ground state of Li is fcc with 9R 
(hexagonal) as a metastable phase induced experimentally 
by the environment. Superficially, it seems that VMTGE is 
mimicking this behavior. If so, the mimicry would have to 
arise via the combination of the VMT reduced density gra-
dient dependence (µGE = 10/81) and the VMT s-depend-
ence that maps to the HEG in two regimes of s, but not 
in between. The fact that finding the hcp → fcc transition 

Table 3   Comparison of calculated pressure-induced phase transition from hcp to fcc. Transition pressures in Mbar (1 Mbar = 100 Gpa). Com-
pressions at the transition, Ωhcp−fcc/Ωhcp,e, relative to hcp equilibrium volume for the particular XC functional also are tabulated

KSG HL RSK PZ PBE VMTPBE PBEsol VMTGE

P 0.065 0.039 0.068 0.045 0.028 0.031 0.052 0.032

Ωhcp−fcc/Ωhcp,e 0.73 0.83 0.76 0.81 0.86 0.84 0.78 0.76
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in PBEsol requires some computational care is consistent 
with that interpretation. Supposing that interpretation to 
be true, what would remain unresolved is why the details 
of VMTGE differ just enough from PBEsol, VMTPBE , 
and even from simple LDA (KSG), to give this peculiar 
physics.

Although a large-scale computational survey of many 
GGA functionals applied to Li could be undertaken to 
explore this issue, it seems more plausible that first we need 
more insight into the physics that should be incorporated 
into a GGA X functional on 1 ≤ s ≤ 5. In that sense, the 
puzzle may present an opportunity, though how to exploit 
it is not obvious. One possibility would be to extract the 
effective enhancement factor FGGA

x
 from the Monte Carlo 

data [50]. In addition to the numerical work required, an 
underlying challenge in doing that would be to separate the 
exchange and correlation contributions appropriately.

It may be, however, that the Li cold curve is simply too 
subtle to describe with a GGA. At first thought, such a find-
ing would be not only somewhat unexpected but also a 
seemingly serious threat to the orbital-free DFT (OFDFT) 
agenda. An alternative perspective is that the physics of co-
existing metastable phases (polytype) suggests that there 
is an important real-space non-locality. That in turn sug-
gests pursuing the OFDFT agenda via a combination of a 
one-point functional (GGA) and a supplemental two-point 
functional, namely Ex = E

GGA
x

+ E
(2)
x

 with

There is a history of approximations of the form of E(2)
x

 by 
itself that is, as Ref. [51] suggests, not too encouraging. 
However, the two-point form represents an alternative to 
the conventional OFDFT route to approximate non-locality, 
which rapidly becomes quite cumbersome as higher-order 
spatial derivatives (beyond Laplacians) are included. And 
while the computational cost of a two-point functional 
obviously is higher than for one-point OFDFT approxi-
mations, the OFDFT scaling with system size would be 
preserved.
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Appendix

For reference and to enable extraction of cohesive ener-
gies from the crystalline data presented here, the associated 
spin-polarized atomic energies are in Table 4. Those were 

(8)

E
(2)
x

[n] = cx

∫

dr1 dr2n
2/3(r1)κx(n(r1); n(r2))n2/3(r2).

computed with an uncontracted 12s basis constructed by 
adding two diffuse orbitals, exponents 0.063, 0.028, to the 
10 s KS manifold used in the solid calculations.
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