Local pressure for inhomogeneous fluids

James Dufty1 | Jeffrey Wrighton1 | Kai Luo2

1Department of Physics, University of Florida, Gainesville, Florida
2Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094

Correspondence
James Dufty, Department of Physics, University of Florida, Gainesville, FL 32611. Email: dufty@phys.ufl.edu

Funding Information
Carnegie Institution for Science.; National Science Foundation, Grant/Award Number: NSF CSEDI grant EAR-1901813; US Department of Energy, Grant/Award Number: Grant DE-SC0002139.

Abstract
Definitions for a local pressure in an inhomogeneous fluid are considered for both equilibrium and local equilibrium states. Thermodynamic and mechanical (hydrodynamic) contexts are reconciled. Remaining problems and uncertainties are discussed.

1 | INTRODUCTION

The global pressure for equilibrium systems is well defined within statistical mechanics, both quantum and classical.1 For extensive systems, the definitions for different ensembles are equivalent. Here the grand canonical ensemble will be chosen for such representations, characterized by an inverse temperature \(\beta \) and activity \(\nu \). The global pressure is then proportional to the grand potential, which defines all thermodynamic properties of the system. Its form is obtained from variations of the grand potential with respect to volume, leading to the equilibrium average of a specific operator equivalent to the familiar virial equation. For the special case of inhomogeneous equilibrium states for systems with an external potential \(v^{\text{ext}}(r) \) the effective activity \(\nu^{\text{eff}}(r) \) varies locally so it is appropriate to define an associated local thermodynamics.2

The first objective here is to explore how to define a local thermodynamic pressure \(p^{\text{eff}}(r,\beta,\nu) \) whose spatial integral is the global pressure.3-5 The notation indicates that the local pressure depends on the space point \(r \), the inverse temperature \(\beta \), and is a functional of \(\nu^{\text{eff}}(r) \). It is straightforward to identify a local operator whose ensemble average integrates to the global virial equation, defining such a local pressure. However, it is not unique since any contribution whose integral vanishes can be added. Additional constraints are needed.

A conceptually different notion of pressure is obtained from the average momentum flux of the inhomogeneous equilibrium fluid, or pressure tensor \(p^{\text{m}}(r,\beta,\nu) \). Local conservation of momentum at equilibrium leads to a force balance equation relating the gradient of that pressure tensor to the applied external force. This approach has an extensive history in the classical description of interfaces and surface tension.6-9 Derivation of the conservation law from the underlying Heisenberg dynamics provides the form of the operator whose average gives the pressure tensor. It does not explicitly exploit the grand potential or any thermodynamics other than the stationarity of the equilibrium state. While the local thermodynamic pressure is defined only indirectly from the global pressure, the pressure tensor is inherently a local property. However, this method only provides the divergence of the pressure tensor and the latter is therefore not unique. Consequently the related scalar pressure \(p^{\text{m}}(r,\beta,\nu) \equiv p^{\text{m}}(r,\beta,\nu)/3 \) also is not unique (here and below a summation over repeated indices is implied). The pressure obtained from the pressure tensor will be referred to as the hydrodynamic or mechanical pressure as it appears in the macroscopic conservation equations. Clearly, it is desirable that the thermodynamic and hydrodynamic pressures should be the same for consistent representations of the stationary states. It is expected that the uncertainties in each can be exploited to assure this equivalence.

Two cases are considered here, the inhomogeneous equilibrium states described above, and their generalization to local equilibrium states. The latter differ in the sense that the inverse temperature can be spatially varying, \(\beta = \beta(r) \), in addition to the activity \(\nu(r) \). For equilibrium states it is shown that the uncertainty in the thermodynamic pressure can be removed by adding a contribution that equates it to the hydrodynamic pressure.

The same objective arises in the more general context of non-stationary local equilibrium states of hydrodynamics. The associated ensemble is similar to the equilibrium ensemble. A “thermodynamics”
for this state can be defined from the associated grand potential and
an associated local pressure identified. However, in this case, for
spatially varying \(\beta \), there is no longer the flexibility to modify the
thermodynamic local pressure to be equal to that from the local equi-
librium average of the stress tensor. Consequently, it would seem that
the equation of state for hydrodynamics is not the same as that for
local equilibrium thermodynamics. The precise difference is identified
below. Unfortunately, this implies that the equivalence chosen for the
strict equilibrium noted above is not recovered from the hydrody-
namic equations for their stationary limit.

This paradox is resolved by exploiting the uncertainty in the pres-
ture tensor. A divergenceless additional contribution to the average
momentum flux can be chosen such that the local pressure associated
with the new momentum flux agrees with the thermodynamic pres-
ture. In this way, thermodynamic and mechanical concepts are
reconciled.

The analysis here is based in quantum statistical mechanics so
that all average properties have an associated underlying operator
representing them. The calculation of their averages is not discussed
but the connection to density functional theory methods is indicated.
An alternative approach is to postulate an average pressure tensor
and verify that it yields the required macroscopic force balance equa-
tion. This has been described by Percus for the inhomogeneous equi-
librium fluid. His pressure tensor is entirely characterized by the
thermodynamic free energy density. It is described in Supporting
Information S3 and the associated pressure is identified.

The primary importance of this investigation of equivalence is for
the local equilibrium states of hydrodynamics. In that case both con-
cepts of the pressure occur. The first is as a functional relationship
between the fundamental conserved number, energy, and momentum
densities and their conjugate fields activity, temperature, and flow
velocity. This functional relationship is the thermodynamics of the
local equilibrium grand potential, or thermodynamic pressure. The sec-
ond occurrence is through the average momentum flux, comprised as
a reference local equilibrium average and a dissipative component.
Only the reference contribution is considered here and is referred to
as the average mechanical pressure tensor. It is a functional of the
conjugate fields. Hence the equivalence of the thermodynamic and
mechanical pressures is a necessary condition for the hydrodynamic
equations to provide a closed local macroscopic description, regard-
less of the choice for the dissipative component (e.g., Navier–Stokes
or far from equilibrium).

At this point it is appropriate to characterize the context by not-
ing related topics not bearing directly on the question of equivalence.
The lack of uniqueness for the mechanical pressure tensor is well
known; for early references see References 6–9. Most of these stud-
ies do not make explicit the required equivalence with thermodynamic
pressure. An exception is one demonstration that the Harasima choice
gives the wrong pressure in cylindrical coordinates. This is resolved
in a recent work for cylindrical geometry by synthesizing the Irving
and Kirkwood and Harasima expressions for different coordinates.
In Reference 14, another definition of the local thermodynamic pres-
sure closer to that given here does not make any connection to the
various choices for the mechanical pressure tensor. In summary, the
work here is complementary to this important body of work by relat-
ing the two different studies of thermodynamic pressure and mecha-
nical pressure tensor. Further comment is given in the final
section where measurement by simulation is briefly discussed.

The local equilibrium thermodynamics considered here describes a
reference state for real nonequilibrium systems. In the context of
information entropy it provides the optimal representation in
terms of the given exact average local conserved densities. The latter
must be provided from some detailed exact theory (e.g., Liouville–
von Neumann equation). The grand potential associated with the
local equilibrium ensemble provides the “equation of state” for gener-
ating conjugate variables such as temperature and activity, and is the
direct analog of equilibrium thermodynamics. To further clarify
the context it is noted that the current work does not relate to the
general fields of “nonequilibrium thermodynamics” or “extended
thermodynamics.” The former is an attempt to discover universal
fundamental principles, similar to those of equilibrium thermody-
namics (e.g., a generalized second law, entropy), that govern the dis-
sipative dynamics of macroscopic properties. Extended irreversible
thermodynamics takes as the macroscopic fields the usual local con-
erved fields plus the dissipative fluxes of energy and momentum.
The conservation laws of ordinary hydrodynamics must then be sup-
plemented with unknown additional equations for the dissipative
fluxes. If the latter could be given in terms of the conserved fields
this would not be necessary, so in a sense extended hydrodynamics
is a tool to discover those forms. The local equilibrium thermody-
namics considered here is not a theory, such as those sought above,
but rather an exact functional relationship among two equivalence
classes of fields—there is no entropy production nor inherent diss-
ipation beyond that of the input fields. While it represents general
nonequilibrium states, it is not predictive without the hydrodynamic
equations themselves (for an exact formulation of the latter see Ref-
ence 10).

2 LOCAL PRESSURE FOR AN
INHOMOGENEOUS FLUID AT EQUILIBRIUM

Consider first a system of \(N \) particles in a large volume \(V \) with
Hamiltonian

\[
\mathcal{H}_N = H_N + \sum_{\alpha=1}^{N} v^{\alpha\alpha}(\mathbf{q}_\alpha).
\]

(1)

where \(v^{\alpha\alpha}(\mathbf{q}_\alpha) \) is an external potential coupling to the particle with
position operator \(\mathbf{q}_\alpha \), and the isolated system Hamiltonian \(H_N \) is

\[
H_N = \sum_{\alpha=1}^{N} \frac{p_\alpha^2}{2m} + \frac{1}{2} \sum_{\alpha \neq \beta=1}^{N} U_N(|\mathbf{q}_\alpha - \mathbf{q}_\beta|).
\]

(2)

Here \(U_N(|\mathbf{q}_\alpha - \mathbf{q}_\beta|) \) is a pair potential for particles \(\alpha \) and \(\sigma \), and \(p_\alpha \)
is the momentum operator for particle \(\alpha \). At equilibrium with inverse
temperature β and activity ν the average of a property characterized by an operator X_N is given in the grand canonical ensemble by
\[
\langle X \rangle^\text{e} = \frac{1}{N!} \sum_{N} \text{Tr}^{(N)} X_N, \quad \rho^e_N = e^{-\beta Q(\beta, \nu)}/e^{-\beta \ln(N!)}.
\] (3)

The external potential has been combined with the activity to define a local activity $\nu(r)$
\[
\nu(r) = \nu - \nu \text{ext}(r),
\] (4)
and $n(r)$ is the number density operator
\[
n(r) = \sum_{a=1}^{N} \delta(r - q_a).
\] (5)

The notation $Y(\beta, V|\nu)$ here and below denotes a function of β, V and a functional of $\nu(r)$. The normalization function $Q^e(\beta, V|\nu)$ is known as the grand potential\(^{20}\) and is chosen such that $(1)^e = 1$
\[
Q^e(\beta, V|\nu) = \ln \sum_{N} \text{Tr}^{(N)} e^{-\beta \ln(N!)}.
\] (6)

It determines the complete thermodynamics for the system through the definition of the global pressure
\[
\beta \mathbf{p}^e(\beta, \nu) V = Q^e(\beta, V|\nu).
\] (7)

For a sufficiently large volume $Q^e(\beta, V|\nu)$ is extensive (proportional to V) so the pressure is independent of the volume. Then an equivalent form for Equation (7) is
\[
\beta \mathbf{p}^e(\beta, \nu) V = \frac{\partial Q^e(\beta, V|\nu)}{\partial V}.
\] (8)

The volume derivative can be calculated directly (e.g., using length scaling\(^{10,21}\)) to get
\[
\mathbf{p}^e(\beta, \nu) = \frac{1}{3V} \{2(\mathbf{K})^e + \langle \mathbf{V} \rangle^e\},
\] (9)
where \mathbf{K} is the kinetic energy operator and \mathbf{V} is the virial operator (for the internal forces)
\[
K_N = \sum_{a=1}^{N} \frac{1}{2m^2} \mathbf{p}_a^2 + \sum_{a \neq b}^{N} \langle \mathbf{q}_a - \mathbf{q}_b \rangle \mathbf{F}_{ab}(\mathbf{q}_a - \mathbf{q}_b).
\] (10)

It is seen that Equation (9) is the usual virial equation for the global (intrinsic) pressure, confirming the consistency of the thermodynamic and mechanical concepts of global pressure.

The objective now is to identify an associated local density pressure. It is done by defining a local density for the grand potential in Equation (7)
\[
\int dr \rho^e(r, \beta, \nu)(\rho, \mathbf{v}) = Q^e(\beta, V|\nu).
\] (11)

Accordingly, $V^{-1} \mathbf{p}^e(\beta, \nu)$ is the local density for the global pressure
\[
\mathbf{p}^e(\beta, \nu) \equiv \frac{1}{V} \int dr \mathbf{p}^e(r, \beta, \nu).
\] (12)

One choice to identify it is to replace the operators \mathbf{K} and \mathbf{V} in Equation (9) by associated local densities
\[
\rho_0^e(r, \beta, \nu) = \frac{1}{2} \left(2K_0(r) + V_0(r)\right)^e,
\] (13)
where
\[
K_0(r) = \frac{1}{4m} \sum_{a \neq b}^{N} \left[p_a^2 \delta(r - \mathbf{q}_a)\right]_r.
\] (14)

\[
V_0(r) = \frac{1}{2} \sum_{a \neq b}^{N} F_{ab}(\mathbf{q}_a - \mathbf{q}_b)(\mathbf{q}_a - \mathbf{q}_b)\delta(r - \mathbf{q}_a).
\] (15)

The brackets $[a, b]_r$ denote an anticommutator. It is required in Equation (14) to assure that $K_0(r)$ is Hermitian. More generally, the local pressure can be expressed as
\[
\mathbf{p}^e(r, \beta, \nu) = \rho_0^e(r, \beta, \nu) + \Delta \rho_0^e(r, \beta, \nu),
\] (16)
where $\Delta \rho_0^e(r, \beta, \nu)$ is any functional whose volume integral vanishes.
\[
\int dr \Delta \rho^e(r, \beta, \nu) = 0.
\] (17)

To suggest another alternative choice for $\rho^e(r, \beta, \nu)$ consider the exact microscopic conservation law for the momentum density operator $p_{\nu}(r, t)$ (see Supporting Information S1)
\[
\partial_t \rho_{\nu}(r, t) + \hat{v} \mathbf{j}_{\nu}(r, t) = -n(r, t) \hat{v} \text{ext}(r, t),
\] (18)
where the momentum density operator is
\[
\rho_{\nu}(r, t) = \frac{1}{2} \sum_{a=1}^{N} \mathbf{p}_{\nu}(r, t)(\mathbf{q}_a(t) - \mathbf{q}_a(t)),
\] (19)
and the momentum flux is
thermodynamics. Both yield the thermodynamic global pressure. The choice of Equation (18) gives the stationary equilibrium force balance to the grand potential or thermodynamics.

Since the equilibrium ensemble is stationary, the equilibrium average of Equation (18) gives the stationary equilibrium force balance equation

\[\partial_\lambda \langle t_{\lambda}(r) \rangle^\lambda = -\langle n(r) \rangle^\lambda \partial_\lambda \psi(r). \]

(22)

This is the expected local stability condition. A mechanical pressure can be associated with the average momentum flux according to

\[p_m^\lambda(r, \beta \nu) = \frac{1}{3} \langle t_{\lambda}(r) \rangle^\lambda. \]

(23)

Note that Equation (20) implies

\[\frac{1}{\mathcal{V}} \int d^3r \frac{1}{3} \langle t_{\lambda}(r) \rangle^\lambda = \frac{1}{3} [2\langle K \rangle^\lambda + \langle V \rangle^\lambda] = p^\lambda(\beta \nu). \]

(24)

where the last equality follows from Equation (9). Use has been made of the identity

\[\int d^3r D_j(r, q_m, q_j) = q_m - q_j. \]

(25)

The left side of Equation (24) suggests an alternative choice for the definition of a local pressure in Equation (12)

\[p^\lambda(\beta \nu) = p_m^\lambda(r, \beta \nu) = \frac{1}{3} \langle t_{\lambda}(r) \rangle^\lambda. \]

(26)

This definition has a mechanical origin, without direct reference to the grand potential or thermodynamics.

The two choices \(p_m^\lambda(r, \beta \nu) \) and \(p_m^\lambda(r, \beta \nu) \) are clearly different, but both yield the thermodynamic global pressure. The choice \(p^\lambda(\beta \nu) = p_m^\lambda(r, \beta \nu) \) for the local pressure in Equation (12) is clearly the desirable one as it assures the mechanical balance equation is consistent with thermodynamics.

Since \(t_{\lambda}(r) \) has a precise microscopic origin, this provides a local microscopic basis for the pressure.

\[p^\lambda(\beta \nu) = \frac{1}{3} (2\langle K \rangle^\lambda + \langle V \rangle^\lambda), \]

(27)

with

\[K_{\lambda}(r) = \frac{1}{8m} \sum_{\nu \neq 1}^{N} \left[p_{\nu r} \partial_\nu \delta(r - q_{\nu}) \right]. \]

(28)

and

\[\mathcal{V}_\lambda(r) = \frac{1}{2} \sum_{\nu \neq 1}^{N} F_{\nu \lambda}(q_{\nu} - q_{\lambda}) D_j(r, q_{\nu}, q_j). \]

(29)

This is the desired result.

It is seen that while the global pressure is the same for \(p^\lambda(\beta \nu) \) and \(p_m^\lambda(r, \beta \nu) \), the local pressures differ in their microscopic realizations

\[K_{\lambda}(r) = K_{\lambda\nu}(r) + \frac{h^2}{8m} \nabla^2 n(r), \]

(30)

To get Equation (29) use has been made of the identity

\[\frac{1}{2} \sum_{\nu \neq 1}^{N} p_{\nu r} \partial_\nu \delta(r - q_{\nu}) p_{\nu \lambda} = K_{\lambda\nu}(r) + \frac{h^2}{4m} \nabla^2 n(r). \]

(31)

The dependence on \(h \) has been made explicit in Equations (29) and (31) to emphasize this is a purely quantum effect. The identification of the local pressure in terms of the average momentum flux is a common definition. What is new here is its identification as the thermodynamic local pressure for the grand ensemble.

The local pressure \(p_m^\lambda(r, \beta \nu) \) is more sensitive to spatial variations of the inhomogeneous state than \(p_m^\lambda(r, \beta \nu) \). In fact \(p_m^\lambda(r, \beta \nu) \) results from it by a leading order Taylor series approximation, for example,

\[D_j(r, q_m, q_j) = (q_m - q_j) \delta(r - q_j) + \int_{\lambda} d^3x \left[\frac{1}{J_{\lambda}} \frac{d J_\lambda}{d\lambda} \left(\delta(r - x) - \delta(r - q_j) \right) \right] \]

\[\simeq (q_m - q_j) \delta(r - q_j). \]

(32)

This gives \(\mathcal{V}_\lambda(r) \approx \mathcal{V}_{\lambda\nu}(r) \) and \(p_m^\lambda(r, \beta \nu) \approx p_m^\lambda(r, \beta \nu) \). This leading order approximation is justified only in the context of states that have smooth spatial variations over distances of the order of the force range. For extreme conditions, such as occur for warm, dense matter states it would seem that the form Equation (20) must be used for the momentum flux.

In summary, two definitions for a local pressure have been identified, \(p_m^\lambda(r, \beta \nu) \) and \(p_m^\lambda(r, \beta \nu) \). Each has been identified in terms of the
average of an underlying microscopic operator. They provide the same global thermodynamics in the sense that both of their volume integrals yield \(P(\rho, \beta) \). However, at the local level they differ by \(\Delta p_\beta(r, \beta) \), identified from Equations (29–31). The choice of \(p^\alpha(r, \beta) = p^\alpha_0(r, \beta) \) for the thermodynamic pressure is made on the basis of equating thermodynamic and mechanical definitions.

So far only the scalar local pressure has been considered. There is no thermodynamic route to define a local pressure tensor for an inhomogeneous fluid at equilibrium (see, however, Supporting Information S3). Instead it is identified from Equation (22)

\[
p_\beta^\hat{\alpha}(r, \beta) = \langle \hat{t}_\alpha(r) \rangle.
\]

By construction it has the form

\[
p_\beta^\alpha(r, \beta) = \frac{1}{3} \hat{p}_\beta^\alpha(r, \beta) \delta_\alpha + p_\beta^\alpha(r, \beta),
\]

(34)

(where \(\hat{p}_\beta^\alpha \) is its traceless part) and satisfies the force balance equation

\[
\partial_t p_\beta^\alpha(r, \beta) = -\langle n(r) \rangle \partial_i \nabla^{\alpha\beta}(r).
\]

(35)

In the next section, attempts to extend the equivalence of thermodynamic and mechanical concepts to local equilibrium states in the same way lead to difficulties due to the spatial variations of \(\beta(r, \, t) \).

3 | LOCAL HYDRODYNAMIC PRESSURE

Consider now a general nonequilibrium state. The macroscopic hydrodynamic equations have their origins in averages of the underlying microscopic conservation laws for number density, energy density, and momentum density, \(\langle n(r, \, t) \rangle, \langle e(r, \, t) \rangle, \langle p(r, \, t) \rangle \rangle.10,11,22 In particular the hydrodynamic equation resulting from the conservation law for the momentum density follows from the nonequilibrium average of Equation (18)

\[
\partial_t \langle p(r, \, t) \rangle + \partial_i \langle \hat{t}_\alpha(r, \, t) \rangle = -\langle n(r) \rangle \partial_i \nabla^{\alpha\beta}(r),
\]

(36)

where the brackets now denote a nonequilibrium average

\[
\langle X(t) \rangle \equiv \sum N \tau_{N}^{(t)} X_{N} \psi_{N}(t),
\]

and \(\rho_{N}(t) \) is a solution to the Liouville–von Neumann equation. Traditionally, the momentum density is expressed in terms of a local flow velocity \(u(r, \, t) \) defined by

\[
\langle p(r, \, t) \rangle = m \langle n(r, \, t) \rangle u(r, \, t),
\]

(38)

and Equation (36) is written in terms of the momentum flux in the local rest frame

\[
\langle t_\alpha(r, \, t) \rangle = m \langle n(r, \, t) \rangle u(r, \, t) u_\alpha(r, \, t) + \langle \hat{t}_\alpha(r, \, t) \rangle.
\]

(39)

Here the rest frame momentum flux \(t_{\alpha}(r, \, t) \) has the same form as Equation (20) with the particle momenta in the rest frame, \(p_{\alpha}(r, \, t) \rightarrow p_{\alpha}(r, \, t) - \mu_{\alpha}(q_{\alpha}(r, \, t), \, t) \). Then the momentum conservation law takes the form

\[
D_i u_{\alpha}(r, \, t) + \partial_{\alpha} \langle t_\beta(r, \, t) \rangle = -\langle n(r) \rangle \partial_i \nabla^{\alpha\beta}(r, \, t),
\]

(40)

with the material derivative \(D_i = \partial_{i} + u(r, \, t) \cdot \nabla \). In this way, the purely convective contributions have been made explicit.

It remains to calculate the rest frame momentum flux \(\langle t_\alpha(r, \, t) \rangle \). To do so, the solution to the Liouville–von Neumann equation is separated into a reference local equilibrium state, \(\rho_{N}^\alpha \), and its remainder \(\Delta_N \)

\[
\rho_{N}(t) = \rho_{N}^\alpha(y(t)) + \Delta_N(t).
\]

(41)

The reference local equilibrium state is chosen to be entirely determined by a set of conjugate fields \(y(t) \) in one-to-one correspondence with the macroscopic conserved fields \(\langle n(r, \, t) \rangle, \langle e(r, \, t) \rangle, \langle p(r, \, t) \rangle \). This correspondence is defined by the requirements that the reference state yield the exact averages for the local conserved fields

\[
\rho_{N}^\alpha(y(t)) \equiv \langle n(r, \, t) \rangle,
\]

(42a)

\[
\mathbf{e}_{\gamma}(r) = \langle e(r, \, t) \rangle,
\]

(42b)

\[
\mathbf{p}_{\alpha}(r) = \langle p(r, \, t) \rangle.
\]

(42c)

where the superscript \(\alpha \) denotes a reference ensemble average, \(\mathcal{A}^\alpha = \mathcal{A}^\alpha_O \). The left sides of these equations are functions of the conjugate fields while the right sides are the fields of the local conservation laws. In this way, the conjugate fields \(y(t) \) are functions of the average conserved fields, and vice versa by inversion. The reference state therefore has the exact average values for the conserved fields by construction.

A choice for \(\rho_{N}^\alpha \) with these properties is the local equilibrium ensemble11,22

\[
\rho_{N}^\alpha[y(t)] = e^{-\psi_{\alpha}(y(t))}, \quad \psi_{\alpha}(y(t)) = Q_{\alpha}^\prime[y(t)] + \int d\psi_{\alpha}[r] y_{\alpha}(r, t),
\]

(43)

\[
Q_{\alpha}^\prime[y(t)] = \ln \sum N \tau_{N}^{(t)} e^{-\int d\psi_{\alpha}[r] y_{\alpha}(r, t)},
\]

(44)

where \(\psi_{\alpha}(r) \) are the operators representing the local conserved number density, energy density, and momentum density

\[
\psi_{\alpha}(r) \equiv \{ n(r), e(r), p(r) \},
\]

(45)

and \(y_{\alpha}(r, \, t) \) are the conjugate fields,
\[\{ Y(r,t) \} \rightarrow \left\{ -\nu(r,t) - \frac{\beta(r,t)}{2} m u^2(r,t), \beta(r,t), -\beta(r,t) u(r,t) \right\}. \] (46)

It is interesting to note that this local equilibrium ensemble is also the “best choice” in the sense that it maximizes the information entropy for the given values of the conservative fields.15-17 In Reference 11 it is also called the “relevant” ensemble.

Accordingly, the average rest frame momentum flux \(\langle t_0(r,t) \rangle \) of Equation (39) has two contributions. One is from the reference local equilibrium ensemble \(\rho_0^r \), and one from the remainder in Equation (41)

\[
\langle t_0(r,t) \rangle = \sum_{N} \text{Tr}[N] t_{00}(r) \rho_0^r[y(t)] + \sum_{N} \text{Tr}[N] t_{00}(r) \Delta_N(t)
= \text{Tr} \left(\pi_0(r) \right) + \delta(t_0(r,t)).
\] (47)

It is shown elsewhere10,11 that the second term of Equation (47) describes the dissipative processes of the system while the first term characterizes the “perfect fluid” (e.g., Euler) dynamics. The latter is entirely determined by its functional dependence on the conjugate fields and reduces to the equilibrium pressure tensor of the last section in the case of uniform \(\beta(r,t) \). In the following attention will be restricted to \(T_0 \) (\(r \)y(t)) and its possible relationship to an underlying “local equilibrium thermodynamics.”

For the purpose of calculating averages in the rest frame, the macroscopic velocity dependence can be eliminated so the conjugate fields simplify to

\[\{ Y(r) \} \rightarrow \{ -\nu(r), \beta(r), 0 \}. \] (48)

Also, the dependence of these fields on time has been suppressed for simplicity here and below. The hydrodynamic (mechanical) pressure and pressure tensor are defined in terms of the momentum flux as in the previous section

\[
\rho_0^r(r) = \text{Tr} \left(\pi_0(r) \right),
\] (49)

\[
\rho_0^r(r) = \text{Tr} \left(\pi_0(r) \right).
\] (50)

Since the functional form of the operator \(t_0(r,t) \) in Equation (52) is the same for both equilibrium and nonequilibrium states, the local pressure here is still given by Equation (27) with only the definition of the average changed

\[
\rho_0^r(r) = \frac{1}{3} \left[2K_0(r) + \nu_0(r) \right].
\] (51)

Next, a thermodynamics associated with the local equilibrium state is defined in analogy to strict equilibrium via the normalization function \(Q' \) of Equation (44). As noted above the average velocity field can be transformed to zero so the energy \(e(r) \) is also in the local rest frame. Then Equation (44) becomes

\[
Q'[\beta, \nu] = \ln \sum_{\gamma} \text{Tr}[\gamma] e^{-\int dr [\beta(r)e(r) - \nu(r)r(r)]}.
\] (52)

In analogy to Equations (7) and (8), a local equilibrium pressure can be defined by

\[
\frac{1}{V} \int dr \rho(r)p^r(r) = \frac{\partial Q'[\beta, \nu]}{\partial \beta \nu},
\] (53)

or for extensive systems

\[
\frac{1}{V} \int dr \rho(r)p^r(r) = \frac{\partial Q'[\beta, \nu]}{\partial \beta \nu}. (54)
\]

Carrying out the volume derivative leads to

\[
\frac{\partial Q'[\beta, \nu]}{\partial \beta \nu} = \frac{1}{3V} \sum_{\nu} 2 \left[\rho_0^r(r) \beta(\nu) \right]_{\nu} \left[\rho_0^r(r) \beta(\nu) \right]_{\nu} + \frac{1}{2} \sum_{\nu, \nu} \rho_0^r(r) (\nu - \nu) \cdot F_{\nu, \nu} (|\nu - \nu|) \right), (55)
\]

where \(K_0(r) \) and \(\nu_0(r) \) are given by Equations (14) and (15). Therefore, Equation (54), or equivalently Equation (53) gives the identification

\[
Q'[\beta, \nu] = \int dr \rho(r)p_0^r(r) \beta(\nu),
\] (57)

with

\[
p_0^r(r) = \frac{1}{3} \left[2K_0(r) + \nu_0(r) \right].
\] (58)

This is not the same as the hydrodynamic pressure of Equation (33), \(p^r(r) \beta(\nu) \). Their volume integrals are the same

\[
\int dr \rho(r)p_0^r(r) = \int dr \rho(r)p_0^r(r),
\] (59)

but only \(p_0^r(r) \beta(\nu) \) provides the local density for the grand potential

\[
Q'[\beta, \nu] = \int dr \rho(r)p_0^r(r) \beta(\nu) \neq \int dr \rho(r)p_0^r(r) \beta(\nu).
\] (60)

This can be stated in an equivalent way. Using Equations (29) and (30) the relationship is
\[p'_n (r|\beta, \nu) = p'_0 (r|\beta, \nu) + \Delta p'_0 (r|\beta, \nu). \] (61)

\[\Delta p'_0 (r|\beta, \nu) = \frac{\hbar^2}{12m} \nabla^2 \pi'(r) + \frac{1}{2} \sum_{i=1}^N F_{\text{int}}(\langle q_i - q_{i'} \rangle) [\mathcal{D}(r, q_i, q_{i'}) - (q_i - q_{i'}) \delta(r - q_i)]. \] (62)

Planck's constant has been restored in Equation (62) to make explicit the fact that this term has a purely quantum origin. The local pressures differ for strongly inhomogeneous states, but are the same globally:

\[\int dr \Delta p'_0 (r|\beta, \nu) = 0. \] (63)

However, in contrast to the strict equilibrium case of the last section they do not both give the grand potential due to the appearance of \(\rho(q_i) \) in Equation (55):

\[\int dr \rho(r) \Delta p'_0 (r|\beta, \nu) \neq 0. \] (64)

Thus the hydrodynamic local pressure, \(p'_n (r|\beta, \nu) \), does not have the expected relationship to thermodynamics.

The seeming paradox now is that the stationary solution to the hydrodynamic equations is Equation (35)

\[\partial_t \rho'_0 (r|\beta, \nu) = -\langle n(r) \rangle \partial_n \pi'(r), \] (65)

\[p'_0 (r|\beta, \nu) = \frac{1}{3} p'_n (r|\beta, \nu) \delta_{ij} + p'_{ij} (r|\beta, \nu), \] (66)

but the corresponding pressure \(p'_n (r|\beta, \nu) \) is not the thermodynamic local pressure \(p'_0 (r|\beta, \nu) \) even in the limit of uniform \(\beta \). The hydrodynamic stationary state is not the thermodynamic state.

4 | REVISED MOMENTUM FLUX AND HYDRODYNAMIC PRESSURE

While there is no flexibility in the choice \(p'_0 (r|\beta, \nu) \) in the first equality of Equation (60) due to the space dependence of \(\rho(q) \) there is some ambiguity in \(p'_n (r|\beta, \nu) \) available to remove the inequality. This is due to the fact that only the space derivative of \(t_{00} (r) \) occurs in Equation (40). Consequently, any tensor of the form

\[\tilde{t}_{00} (r) = \tilde{t}_{00} (r) + \epsilon_{ijk} \partial_A A_{ij}(r), \] (67)

will give an equivalent derivative. More generally, it is shown that the contour in the definition of \(\mathcal{D}(r, q_i, q_{i'}) \), Equation (21) can be chosen such that \(t_{00} (r) = t_{00} (r) \) (see Supporting Information S2), and hence

\[\partial_t \tilde{t}_{00} (r) = \partial_t \tilde{t}_{00} (r). \] (68)

Then the generalization of Equation (67) to its symmetric form is

\[\tilde{t}_{00} = t_{00} + \epsilon_{ijk} \partial_A A_{ij}(r). \] (69)

where here \(\tilde{t}_{00} \) is the symmetric form of Supporting Information S2.

It is readily verified that

\[\partial_t \tilde{t}_{00} (r) = \partial_t \tilde{t}_{00} (r), \] (70)

The hydrodynamic pressure tensor associated with \(\tilde{t}_{00} (r, t) \) is

\[p^{ij}_0 (r|\beta, \nu) = \tilde{t}_{ij00} (r|\beta, \nu) + \epsilon_{ijk} \partial_k A_{ij}(r|\beta, \nu), \] (71)

and the corresponding pressure is

\[p^{ij}_0 (r|\beta, \nu) = p'_n (r|\beta, \nu) + \frac{1}{3} \epsilon_{ijk} \partial_k A_{ij}(r|\beta, \nu), \] (72)

Use has been made of the identity

\[\epsilon_{ijk} \partial_{km} = \delta_{km} \delta_{ij} - \delta_{km} \delta_{ij}. \] (73)

To further simplify Equation (72) choose the arbitrary tensor \(A_{ij}(r|\beta, \nu) \) to be diagonal

\[A_{ij}(r|\beta, \nu) = \delta_{ij} A(r|\beta, \nu), \] (74)

giving

\[p^{ij}_0 (r|\beta, \nu) = p'_n (r|\beta, \nu) + \frac{2}{3} \nabla^2 A(r|\beta, \nu), \] (75)

\[p^{ij}_0 (r|\beta, \nu) = p'_n (r|\beta, \nu) + \left(\partial_{ij} - \partial_{ij} \right) A(r|\beta, \nu). \] (76)

It is now seen that the hydrodynamic pressure \(p^{ij}_0 (r|\beta, \nu) \) can be equated to the thermodynamic pressure \(p'_0 (r|\beta, \nu) \) by the choice

\[\frac{2}{3} \nabla^2 A(r|\beta, \nu) = -\Delta p'_0 (r|\beta, \nu). \] (77)

Since \(\Delta p'_0 (r|\beta, \nu) \) is given explicitly by Equation (62), this Poisson's equation for \(A(r|\beta, \nu) \) is well-defined. In summary, by modifying the form for the average stress tensor the momentum balance equation is unchanged but the mechanical pressure can be chosen equal to the equilibrium pressure for both the equilibrium and
local equilibrium states, and that pressure is $P_0^{\nu}(r|\beta,\nu)$ or $p_0^{\nu}(r|\beta,\nu)$ respectively.

As a special case the explicit results for a noninteracting inhomogeneous gas are

$$\frac{2}{3} \nabla^2 A(r|\beta,\nu) = -\frac{\hbar^2}{12m} \nabla^2 \Pi(r), \quad (78)$$

with the solution

$$A(r|\beta,\nu) = -\frac{\hbar^2}{8m} \Pi(r) + a(r|\beta,\nu), \quad \nabla^2 a(r|\beta,\nu) = 0. \quad (79)$$

In summary, by changing the form of the pressure tensor to Equation (71) there is the freedom to choose the new mechanical local pressure $p^\nu(r|\beta,\nu)$ to be equal to the thermodynamic local pressure $P_0^{\nu}(r|\beta,\nu)$. In this way the desired equality

$$Q^\nu[\beta,\nu] = \int d|_r(r)p_0^{\nu}(r|\beta,\nu) = \int d|_r(r)p_m^{\nu}(r|\beta,\nu), \quad (80)$$

is recovered. This result holds for both equilibrium and local equilibrium states.

5 | DISCUSSION

The definition of a local pressure from two conceptually different origins has been considered. The first is thermodynamic in nature, associated with the local density for the grand potential. The other is mechanical in nature, associated with the average of the local momentum flux (referred to as the mechanical or hydrodynamic pressure). First, a strictly equilibrium state for an inhomogeneous system was described. This is the case of interest for density functional theory where the task is to calculate the global free energy. Although local free energy densities are introduced in that context they are mainly for computational convenience. However, they also provide the basis for a local thermodynamics as well. For example, a local pressure follows from a local “Legendre transformation” of the free energy density. In the present case, the thermodynamic local pressure is introduced directly as the density for the grand potential. It is then compared to the pressure defined from the equilibrium average of the momentum flux (equilibrium force balance equation). The two are different for strongly inhomogeneous states. However, the possibility of adding a contribution $\Delta P_0^{\nu}(r|\beta,\nu)$ whose volume integral vanishes to the grand potential density can be exploited to assure the thermodynamic and hydrodynamic local pressures are the same.

The same analysis for local equilibrium states, where the temperature is also nonuniform, again leads to different forms for the thermodynamic and hydrodynamic local pressures. But in this case there is no longer the flexibility to add a contribution $\Delta P_0^{\nu}(r|\beta,\nu)$ to the thermodynamic local pressure for resolution. Instead, the hydrodynamic local pressure can be changed by exploiting the fact that the momentum flux occurs in the momentum conservation law only as a divergence of that flux. In this way, agreement of the thermodynamic and hydrodynamic local pressures is restored.

For consistency between the local and strict equilibrium states in the limit of uniform temperature, the local equilibrium form must be used, $P_0^{\nu}(r|\beta,\nu) = p_0^{\nu}(r|\beta,\nu)$, that is, the same average momentum flux should be adopted in each case. This is a somewhat simpler form than the pressure tensor and local pressure than $P_0^{\nu}(r|\beta,\nu)$ for the strict equilibrium case. The requirement that the force balance equation at local equilibrium gives the correct local density for the local equilibrium grand potential gives a strong constraint on the equilibrium form as well.

As noted in Equation (61) both $P_0^{\nu}(r|\beta,\nu)$ and $p_0^{\nu}(r|\beta,\nu)$ are the local densities for the global pressure, without any need for modification of the pressure tensor. If that were chosen to be the constraint of thermodynamic consistency, then no modification of the choice $p_0^{\nu}(r|\beta,\nu) = p^\nu(r|\beta,\nu)$ as in the equilibrium case is required—no change in the pressure tensor. Agreement of the equilibrium and local equilibrium cases would be direct, but the inequality Equation (60) would remain. The consequences of this for local equilibrium thermodynamics is not clear and needs to be explored further. The grand potential is a Massieu–Planck functional in the foundations of local equilibrium thermodynamics. The pressure functional alone has no corresponding role.

Reference has been made above to density functional theory where the pressure is expressed as a functional of the density n rather than the activity ν. This change of variables is obtained by inverting

$$\overline{n(r|\beta,\nu)} = \overline{\nu} \rightarrow \nu = \nu(r|\beta,\overline{n}). \quad (81)$$

This is a difficult problem, separate from the discussion referring to the definition of $P_0^{\nu}(r|\beta,\nu)$. However, the proof that the hydrodynamic pressure can be chosen to be the same as the thermodynamic pressure assures that the tools of density functional theory can be used within the hydrodynamic context as well.

In closing it is useful to return to the extensive literature mentioned above regarding the definition of the pressure tensor and its measurement by molecular dynamics simulation, and its common implementation in the Sandia National Laboratories code LAMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). These simulations refer to methods for direct evaluation of the microscopic definitions of the various components for the pressure tensor. Here, no consideration is given for the pressure tensor components beyond its scalar trace. In that respect the equivalence constraint does not determine the full pressure tensor. Also, only its local equilibrium average is involved—the residual irreversible component of the momentum flux is not affected. A direct measurement of the momentum flux by simulation would give the total of both components (see Equation (47)), which would give the part studied here only for non-dissipative flows, for example, the equilibrium state. Finally, the equivalence condition is the equality of two functionals of the density and temperature. The numerical confirmation of functional equivalence is
indeed a formidable task. Thus, the important simulation studies are only of indirect bearing on the limited scope considered here.

ACKNOWLEDGMENTS
The authors are indebted to S.B. Trickey for comments and criticism of early drafts. This research was supported by US DOE Grant DE-SC0002139. Kai Luo was also supported by U.S. NSF CSEDI grant EAR-1901813 and the Carnegie Institution for Science.

ORCID
James Dufty https://orcid.org/0000-0002-2145-3733
Jeffrey Wrighton https://orcid.org/0000-0003-4696-5732
Kai Luo https://orcid.org/0000-0002-3802-0029

REFERENCES

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Dufty J, Wrighton J, Luo K. Local pressure for inhomogeneous fluids. AIChE J. 2021;67(10):e17323. https://doi.org/10.1002/aic.17323