Interedge magnetic coupling in metal-terminated graphene nanoribbons

Yan Wang and Hai-Ping Cheng

Department of Physics and Quantum Theory Project, University of Florida, USA

Graphene nanoribbons (GNRs) with armchair or zigzag edges, a novel organic material system produced by cutting graphene along two crystallographic directions, have recently attracted considerable attention in spintronics. GNR with zigzag edges is known to be magnetic with two spin-polarized edge states, which are ferromagnetically ordered but antiferromagnetically coupled to each other. Most of the previous studies focus ribbons with zigzag edges and hydrogen terminations. Here we present a first-principles study of zigzag and armchair GNRs terminated with 3d transition-metals and noble metals1. Specifically, we investigate the long-range interedge magnetic coupling as a function of the ribbon width2. We also show that the proposed hybrid metal-terminated GNRs can be excellent candidates for spintronic applications.

This work was supported by US/DOE/BES/DE-FG02-02ER45995.