Photofragmentation of Tetranitromethane: Spin-Unrestricted Time-Dependent Excited-State Molecular Dynamics

Yulun Han1,2, Bakhtiyor Rasulev3, Dmitri S. Kilin1,2

1Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108
2Department of Chemistry, University of South Dakota, Vermillion, SD 57069
3Center for Computationally Assisted Science and Technology, North Dakota State University, Fargo, ND 58102

The exploration of photoinduced reactions is a great challenge and a practical demand. Tetranitromethane (TNM) has a wide range of applications. For example, it can be used as a nitrating reagent for a preferential modification of proteins and as an analytical reagent for detection of double bonds in organic compounds. In this study, TNM is used as a test model. The photofragmentation dynamics of TNM is explored by a novel \textit{spin-unrestricted time-dependent excited-state molecular dynamics} (u-TDESMD) algorithm based on Rabi oscillations and trajectory surface hopping, with a mid-intensity field approximation.1,2 The leading order process is represented by the molecule under cyclic excitations and de-excitations. During excitation cycles, the kinetic energy is accumulated to overcome the dissociation barriers in reactant and a sequence of intermediates. The computed results show drastically different reaction pathways for open-shell and closed-shell electronic configurations. Specifically, the simulation using neutral closed-shell TNM as a starting point illustrates mostly single NO\textsubscript{2} ejection pathway. The simulation using cationic open-shell TNM+ as a starting point shows an extensive cracking pathway in addition to sequential NO\textsubscript{2} ejection. The simulated mass spectra at the \textit{ab initio} level, based on the bond length of possible fragments are extracted from simulation trajectories. The computed \textit{ab initio} mass spectra with different starting points might shed light about whether the so-called “ladder switching” or “ladder climbing” process dominates when the molecule interacts with a laser field. The recent-developed methodology has the potential to model and monitor photoreactions with open-shell intermediates and radicals.

References