The Modern Role of NDDO-Based Semiempirical MO Theory

Tim Clark

Computer-Chemie-Centrum, Friedrich-Alexander-Universität Erlangen Nuernberg, Naegelsbachstr. 25, 91052 Erlangen, Germany.

NDDO-based MO theory has some characteristic strengths that define its role in modern research. These are primarily its applicability to large systems (100,000 atoms without local approximations\(^1\) or 50,000 atom repeat-units in periodic calculations\(^2\)), its good performance for one-electron properties\(^3\) and excited states.\(^4\) However, today’s most widely used Hamiltonians suffer from a plethora of non-orthogonal two-center correction terms that improve the performance for weak interactions,\(^5\) or even specific types of bond, such as C-C triple bonds.\(^6\)

This lecture will describe software for very large-scale NDDO calculations and give examples of studies of charge transport in molecular electronic devices and biological systems.

The problem of the “misuse” of nucleus-nucleus potentials will be discussed and a “Feynman” dispersion correction introduced that does not depend on a modified internuclear potential.

---


